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ABSTRACT

The point process model (PPM) for keyword search is a phonetic
event-driven approach that provides a whole-word focused alterna-
tive to fast lattice matching techniques. Recent efforts in PPMs have
been focused on improved model estimation techniques and efficient
search algorithms, but past evaluations have been limited to search-
ing relatively easy scripted corpora for simple unigram queries, pre-
venting comprehensive benchmarking against standard search meth-
ods. In this paper, we present techniques for score normalization
and the processing of multi-word and out of training query terms as
required by the 2006 NIST Spoken Term Detection (STD) evalua-
tion, permitting the first comprehensive benchmark of PPM search
technology against state-of-the-art word and phonetic-based search
systems. We demonstrate PPM to be the fastest phonetic system
while posting accuracies competitive with the best phonetic alterna-
tives. Moreover, index construction time and size are better than any
keyword search system entered in the NIST evaluation.

Index Terms— point process model, spoken term detection,
score normalization, compact speech indexing

1. INTRODUCTION

The point process model represents a fundamentally distinct ap-
proach to the problem of speech recognition. Given that speech
arises from the highly coupled movement of articulators, a core
feature of the PPM framework is the notion that words are charac-
terized by temporal patterns of speech sounds (i.e., phonetic events).
Current theories of human language acquisition also lend credence
to this whole-word approach to recognition. Contrary to previous
beliefs about phonemic development, a large body of evidence sup-
ports the hypothesis that infants first recognize whole words and
only later construct an inventory of phonemes [1]. Additionally,
the fundamental importance of temporal relations in human speech
perception is corroborated by the finding that a basic neurological
impairment in temporal processing lies at the root of most language
learning impairment in children [2]. Beyond motivations in human
speech perception, the PPM framework also possesses fundamental
computational advantages. The reduction of speech to a set of dis-
tinct phonetic events produces an exceedingly sparse representation.
Not only does this permit compact storage, but it also enables very
fast search.

The original formulation of the point process model for keyword
spotting was presented in [3]. Distinct from dense, frame-by-frame
representations of speech that characterize hidden Markov model
(HMM) approaches, the PPM framework operates on a sparse se-
quence of discrete phonetic events and words are modeled as in-
homogeneous Poisson processes. This initial work presented key-
word search experiments on the TIMIT dataset as well as the BU-

Radio news corpus and demonstrated that the PPM system com-
pared favorably with HMM keyword-filler approaches. A related
work [4] explored an alternative method of determining phonetic
events from phone posteriorgram data. It showed that the use of
phonetic matched filters and appropriate threshold selection resulted
in 40% fewer phonetic events and a 20% improvement word spotting
performance. Capitalizing on this extremely sparse representation of
speech, [5] introduced an upper bound on the PPM detection func-
tion that enabled keyword search times exceeding 500,000x faster
than real-time.

Other related works have addressed the issue of estimating PPM
word models. In the original presentation [3], inhomogeneous rate
parameters were derived from maximum likelihood estimates (MLE)
which necessitated the use of numerous keyword training examples.
In [6], we demonstrated that a Bayesian approach could be applied
to whole-word model estimation, significantly reducing the required
number of word examples. Subsequent work presented in [7] devel-
oped improved techniques for synthesizing prior models of phonetic
timing distributions using Monte Carlo and CART approaches.

Unique from previous works on this topic, here we address
several challenges necessary for extending PPM techniques to the
task of spoken term detection in conversational telephone speech.
First, we consider approaches to modeling and search for multi-word
terms as required in the 2006 NIST STD evaluation. We evaluate
techniques for estimating word duration of words not present in
training. Next, we address score normalization of PPM detections
for subsequent evaluation under the actual term-weighted value
(ATWV) metric. Finally, we present the performance of a PPM
system on the 2006 NIST STD evaluation data in relation to other
competitive systems.

2. PPM FOR SPOKEN TERM DETECTION

In PPM keyword search, speech is first distilled to a discrete set of
points in time called phonetic events which correspond to the oc-
currence of phones. Typically, the acoustic signal is processed using
MLP-based phone detectors that produce a phone posteriorgram rep-
resentation from which phonetic events are extracted. Candidate oc-
currences of a keyword are identified from the PPM detection func-
tion defined as the ratio of the likelihood of a set phonetic events
under a keyword model relative to its likelihood under a background
model. Given a keyword w and a set of observed phonetic events
O(t) in the interval (t, t+ T ], the detection function dw(t) is given
by

dw(t) = log

[
P (O(t)|θw, T )
P (O(t)|θbg, T )

]
,

where θw corresponds to the keyword-specific model parameters,
θbg corresponds to background model parameters, and T is the key-
word duration. This detection function is simply a log-likelihood ra-
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tio evaluated at time t which takes large values when it is likely that
keyword w occurred. The PPM model hypothesizes that phonetic
events within words are generated by a set of independent, inhomo-
geneous Poisson processes, one for each phone, that characterize the
temporal structure of phones within a word. These inhomogeneous
Poisson rate parameters comprise the word model θw. Addition-
ally, the background arrival rate of phonetic events independent of
a particular keyword is captured by a set of homogeneous Poisson
processes known as the background model θbg . Keyword duration
T is a latent variable, and we marginalize over T using an estimate
of the keyword duration distribution.

All previous PPM keyword search studies have considered the
modeling and search for single-word queries and assumed that train-
ing examples for all words were available. The 2006 NIST STD
evaluation plan [8] required the search for “terms” defined as se-
quences of consecutively spoken words with gaps of up to 0.5 sec-
onds allowable between words. In this section we consider the mod-
eling of multi-word terms as single units in the PPM framework and
briefly address performing multi-word queries by searching for the
individual term subcomponents. Beyond the issue of multi-word
search terms, the 2006 STD evaluation also necessitated the develop-
ment of techniques to handle queries which do not appear in training,
specifically in the PPM context, the need to estimate word duration
absent any word examples. Finally, maximization of ATWV requires
accurate assessment of detection confidence level; here we address
the normalization of PPM detection scores.

2.1. Whole-word modeling approaches to multi-word terms

We considered four approaches to handling multi-word terms.
The first and most basic is a simple concatenation of the pho-
netic forms of the individual terms. For example, the search term
“health insurance” would be constructed from the phonetic sequence
h,E,l,T,1,n,S,U,ô,@,n,s. A word model is constructed directly from the
phonetic sequence using equidistantly spaced Gaussian distributions
with a fixed variance (see simple dictionary model in [6]). We refer
to this as simple dictionary concatenation and it has the advantage
of requiring no actual training examples.

In all previous work we have found that long keywords are much
easier to identify than short ones, and we expect multi-word terms to
be consistent with this finding. However, word model performance
is also highly correlated with the number of word examples avail-
able, and it is likely that we will observe fewer examples of multi-
word terms in their entirety. We have previously demonstrated in [6]
that MAP estimation is an effective technique for synthesizing word
models from few training examples. Therefore, beginning with a
simple dictionary concatenation model prior, we then incorporate
all the training examples of the term to compute a MAP-estimated
whole-word model. We refer to this as a MAP-estimate model using
simple dictionary prior.

Additionally, multi-word terms offer another possibility. It is
very likely the case that we have many more examples of the indi-
vidual words which comprise a multi-word term than we have com-
plete examples of the multi-word term. For instance, for “health
insurance” it is probable that there are numerous examples of the
individual components “health” and “insurance.” This offers the
possibility of improving our prior model by starting with individual
MAP-estimated models of the words “health” and “insurance,” and
then concatenating them together to form an improved prior. We re-
fer to this as a concatenated MAP-estimated unigram prior. Finally,
the few examples of the multi-word term can then be used in a new
MAP-estimated model which starts from this improved prior.

To evaluate the relative performance of these approaches, we
constructed an STD experiment on 230 hours of the Switchboard
dataset and considered detection performance on multi-word terms.
Results are listed in Table 1. While significant gains are evident
between simple dictionary concatenation and the MAP-estimated
model, the more sophisticated prior and subsequent MAP estimation
yielded smaller improvements.

Table 1. A comparison of multi-word modeling techniques of 571
multi-word terms on Switchboard development corpus.

model description ATWV
ppm1 simple dictionary concatenation 0.4002
ppm2 MAP-estimated using simple 0.4925

dictionary (ppm1) prior
ppm3 concatenated MAP-estimated unigram prior 0.5179
ppm4 MAP-estimated whole-word using 0.5247

unigram (ppm3) prior

As an alternative to modeling a multi-word term in its entirety,
we also considered searching for a term as the ordered union of sub-
term detections with loose constraints on timing. Conceivably, this
approach has two immediate advantages. First, individual words or
sub-term models can be constructed independently which permits
flexibility in the creation of detailed models. Second, detection of
word sequences with intermediate silence is possible. Unfortunately,
this method also raises a number of other issues such as how to best
assign scores to multi-word detections. Additionally, conducting in-
dependent searches incurs a search speed performance hit. After
some preliminary experiments, we determined that further investi-
gation was not warranted.

2.2. Duration modeling of unseen terms

The estimation of word duration is an integral component of PPM
search. In its most basic form, searching for a keyword consists of
sliding a set of windows over the set of phonetic events and the eval-
uating the log-likelihood of events under the keyword model. Since
the duration of a candidate detection is not known a priori, we con-
sider a set of possible candidate duration windows which are drawn
from an estimate of the word’s duration distribution. In early PPM
work with TIMIT, every keyword had 462 training examples, suffi-
ciently many to use the empirical distribution. For later experiments
on the Wall Street Journal (WSJ) corpus, the number of training ex-
amples for each keyword was much lower and use of the empirical
distribution was infeasible. In its place, we adopted a parametric
description of word duration based on the gamma distribution.

Handling words for which zero training examples exist requires
an alternative approach, and we considered three. Admittedly crude,
our first method was to compute distributions based solely on the
number of phones in a word’s canonical dictionary form. We sim-
ply pooled all word examples of a given phone count and computed
MLE estimates for the gamma distribution parameters. For a sec-
ond and more sophisticated model, we compiled duration models
for all the constituent phones. Then, utilizing a technique similar
to the Monte Carlo method in [7], we constructed Monte Carlo ex-
amples of word duration by sampling from the distributions of the
constituent phone duration models, and then estimated MLE gamma
parameters from the Monte Carlo word duration examples. Clearly,
this model failed to capture any dependence of the phonetic context
on phone duration.
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The identical problem was addressed in [7] using a classifica-
tion and regression tree (CART) approach inspired by text-to-speech
synthesis work. In that work, phone duration models were estimated
from the pool of examples at each node of the regression tree. Here,
we opted for a simpler method to incorporate phonetic context. Our
goal was to estimate phone duration models for all phonetic contexts
as permitted by the number of examples available. We began by col-
lecting pools of duration examples for each trigram phone context.
Of course, many of the O(403) possible combinations appear rela-
tively infrequently, so if a context contained fewer than 100 exam-
ples, we backed off to the corresponding bigram phone context (and
likewise from bigram to unigram). Having established the pools of
examples, we then estimated MLE gamma parameters of the dura-
tion model of each context. Finally, the estimation of a word du-
ration model proceeded as before with Monte Carlo word duration
examples constructed from these context-dependent phone duration
models.

To evaluate these three approaches, we considered 230 hours
of Switchboard data partitioned into two folds. Assessment was
based on computing the likelihood of the word durations observed
in one data fold based on training data from the opposite fold using
each modeling approach. Relative to the simplest duration model
based on phone count, the context-dependent estimation approach
provided a 27% improvement in average likelihood and was adopted
for all subsequent experiments.

2.3. Score normalization

A critical element in properly assessing detections is the conversion
from detection score to the estimated probability of a detection. PPM
keyword detections are marked at the local maxima of the detection
function (a log-likelihood ratio) as detailed in [3]. A suitable cut-
off point for reliable detections varies with the number of phones in
a word. In previous evaluations on TIMIT and WSJ datasets, key-
word spotting performance was reported in terms of average figure of
metric (FOM) and an absolute detection threshold was not required.
For the 2006 STD evaluation, the performance metric is actual term-
weighted value (ATWV) which requires the specification of a uni-
form decision threshold and a binary decision associated with each
putative detection. To map PPM detection scores to a detection prob-
ability, we trained a log-linear model using keyword detections from
a comparable STD experiment on Switchboard development data. In
addition to PPM score, the model also used the logarithm of the key-
word duration as an input parameter. These estimates of detection
probability also enabled us to calculate expected counts necessary
for the use of term-specific thresholding in ATWV calculation as de-
scribed in [9].

3. EXPERIMENTS

Prior to testing on the 2006 STD evaluation data, we conducted ex-
tensive developmental work on a 230 hour portion of the Switch-
board corpus in order to assess the methods described in the previous
section (multi-word modeling, duration modeling of unseen terms
and score normalization). We created a Switchboard term list with a
composition roughly the same as the 2006 STD evaluation term list
in percentages of multi-word terms. For acoustic models, we trained
5-layer deep neural networks to estimate posterior probabilities for
40 phonetic classes, and used them for all subsequent experiments.
The 259 hours of Switchboard data was transformed into 476 dimen-
sional FDLP-M feature vectors [10], and subsequently used to train 5
multilayer perceptrons each of size 476×1500×1500×1500×40

using 5-fold cross validation training. We then processed the 259
hours of phone posterior data into phonetic events using phonetic
matched filters as described in [4]. Finally, the data was then parti-
tioned into two data folds for PPM training and evaluation.

Having completed developmental work on Switchboard, we then
performed a series of evaluations using the NIST STD 2006 evalu-
ation data set. The resulting XML detection list was then scored
using the original NIST STDEval tools. STD results are reported
at the bottom of Table 2 for ppm4 multi-word models (see descrip-
tion in Table 1) along with the results of systems in the original 2006
evaluation. In addition to STD performance, we also provide data
on system processing requirements. Further, in Table 3 we provide
system hardware descriptions and processor benchmark data.

3.1. Reference systems

To provide context for the PPM system performance, we have in-
cluded the results from notable LVCSR and phonetic systems in the
English conversational telephone speech (CTS) category of the 2006
STD evaluation (available at [11]). Overall, BBN fielded the top per-
forming system in this category achieving an ATWV of 0.8335 [9].
The structure of BBN’s system consisted of a large-vocabulary,
HMM-based speech recognition system to process audio into deep
word lattices upon which word posterior probabilities were esti-
mated and a word index was generated. Multi-word term detections
were determined by locating sequences of constituent words in the
index that satisfied ordering and timing constraints. A key advan-
tage of the BBN system over similar LVCSR entries came from the
determination of an optimal detection threshold for each term using
the expected term counts from word posterior probability estimates.
Another notable entrant was the LVCSR system from IBM which
achieved an ATWV of 0.7392 [12]. Both of these entries benefited
tremendously from the presence of a large language model, which
provided better estimates of word posterior probabilities (especially
for short words) compared with systems that relied on phonetic
likelihoods alone.

In contrast to the LVCSR systems, we also present two phonetic-
based systems from Brno University of Technology (BUT) and
Queensland University of Technology (QUT). The top performing
phonetic system fielded by BUT achieved an ATWV of 0.2977. In
this system the acoustic models, trained on 277 hours of primarily
Switchboard data [13], were the same used in BUT’s LVCSR-based
primary system except that the decoding produced phoneme lattices
using a phoneme bigram language model. Locating candidate detec-
tions was performed by converting the search term into a phonetic
sequence using a grapheme-to-phoneme tool and then obtaining
candidate sequences of overlapping phoneme trigrams from an in-
verted index of the phone lattice. Next, candidate sequence scores
were derived from the ratio of the likelihood of the term’s phone
sequence to the likelihood of the best path in the phone lattice [14].

The QUT system was also based on phonetic lattice search and
it yielded an ATWV of 0.0873. As described in [15], tied-state tri-
phone HMM acoustic models were constructed using PLP acoustic
features with a biphone language model to generate phonetic lat-
tices. Next, a hierarchical index of the phone sequences and broad
phone class (vowels, nasals, etc.) sequences was constructed. Query
terms were converted into phonetic sequences, and then a technique
termed Dynamic Match Lattice Spotting (DMLS) [16] returned pu-
tative detections of the sequences in the lattice using minimum edit
distance to allow for phonetic substitutions.

In terms of performance, the PPM approach to STD falls in be-
tween that of BUT and QUT’s phonetic-based entries. The QUT sys-
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system BBN IBM BUT QUT PPM PPM
t02 (GPU) a07 (non-GPU)

type LVCSR LVCSR phonetic phonetic ppm ppm
Indexing time (HP/HS) 16.109 7.563 86.823 18.088 0.058 0.610
Search speed (sec.P/HS) 0.0014 0.0041 13.5489 0.3300 0.0107 0.0303
Index Memory Usage (MB) 2,829.39 1,653.43 2,180.91 1,274.66 — —
Search Memory (MB) 130.34 269.13 2.42 468.64 — —
Index processing (HP) 48.20 22.63 259.81 54.13 0.17 1.83
Index size (MB) 1.17 0.98 1,528.23 1,670.52 0.47 0.47
ATWV 0.8335 0.7392 0.2977 0.0873 0.2180 0.2180

Table 2. A comparison of NIST STD 2006 evaluation system processing resources and detection accuracy for English conversational tele-
phone speech. For all systems, the total hours of speech (HS) is 2.99 hours.

system BBN IBM BUT QUT PPM PPM
t02 (GPU) a07 (non-GPU)

CPU 4 CPU 4 CPU various 1 CPU 12 CPU 24 CPU
Intel Xenon Intel Xenon Intel Pentium 4 Intel i7-3930K Intel Xeon E7450

3.40 GHz 3.06 GHz 3.00 GHz 3.20 GHz 2.40 GHz
L2 Cache (KB) 1024 512 various 512 12288 12288
nbench performance
memory index 14.497 9.946 13.967 13.459 43.85 27.498
integer index 9.585 9.658 11.369 9.176 40.317 18.921
floating-point index 18.371 16.411 19.622 18.787 59.443 33.399

Table 3. NIST 2006 STD evaluation system hardware descriptions and processor benchmarks.

tem accomplishes relatively fast lattice-based search, however, we
observed that the inherently sparse representation of the PPM sys-
tem permits it to search 8 times faster than DMLS with better than
twice the accuracy (note: this value has been normalized based on
relative processor speed benchmarks). On the other hand, the BUT
approach trades speed for accuracy and achieves the best ATWV for
phonetic-based systems. Yet, our PPM results are 75% of BUT’s
accuracy while operating 400-times faster (also normalized) with a
significantly smaller footprint.

3.2. System description and processing resources

In addition to detection results, the 2006 STD evaluation also re-
quired participants to report resource and processing utilization for
both indexing and search. In general, processing time is roughly
10 times slower than real-time for producing LVCSR word lattices.
Phonetic lattices contain significantly more connections and require
even more processing time. In the PPM system, what we call an “in-
dex” is just the collection of phonetic events. In addition to being
very compact, its creation is a relatively straightforward process of
feature extraction, MLP forward-pass, and matched filtering of the
resulting phone posteriorgrams. The extraction of phonetic events
from audio can be accomplished at roughly 17 times faster than real
time. We should note that in the phonetic event production pipeline,
only the MLP software currently takes advantage of the GPU; fea-
ture extraction and filtering code is not currently GPU aware. Table 2
shows both GPU and non-GPU performance.

For search, both LVCSR systems achieve very fast search times
thanks to the inverted word index. Searching a phonetic lattice is a
more complex endeavor [14, 16]. The BUT triphone lattice is three
orders of magnitude larger than corresponding LVCSR word lattice
and search is three orders of magnitude slower. The DMLS approach
in the QUT phonetic system is somewhat faster. The PPM search,

while fairly fast, is still basically a linear search. However, phonetic
events represent an extremely sparse representation of speech, and
search speed benefits because of the tiny index size. The quoted in-
dex size of 492KB for 3 hours of speech represents an uncompressed
index (compression such as gzip provides a further 20% reduction
in this case).

The extremely compact size of the PPM index is a significant
advantage of our approach. It permits our system to consider ex-
tremely large volumes of audio data without being overwhelmed by
either processing time or storage considerations. Additionally, the
small memory footprint required by phonetic events will permit our
approach to be ported to multiprocessor devices (GPU) enabling ex-
tremely fast parallel search.

In evaluating the relative system performance, it is necessary to
consider the computation speed of the systems at the time of the
original evaluation. To offer some perspective on the relative speed,
we present system descriptions and benchmarks in Table 3. Over-
all the t02 GPU machine is roughly 3-4 times faster than 2006-era
machines and a07 is approximately twice as fast.

4. CONCLUSIONS

In this work we have addressed many of the technical challenges
required to enable the PPM system to accomplish spoken term de-
tection. Furthermore, this study provides the first side-by-side com-
parison of a PPM system for spoken term detection in the context of
other well documented systems on a standard evaluation dataset. Un-
questionably, LVCSR-based systems will outperform systems that
do not currently benefit from a language model. Yet, we clearly ob-
serve that PPM keyword spotting achieves performance results com-
petitive with other state-of-the-art phonetic-based systems. More
significantly, PPM keyword spotting accomplishes this while requir-
ing a fraction of the computational and storage resources
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