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ABSTRACT

In this paper, we present a fast, vocabulary independent algorithm

for spoken term detection (STD) that demonstrates a word-based in-

dex is sufficient to achieve good performance for both in-vocabulary

(IV) and out-of-vocabulary (OOV) terms. Previous approaches have

required that a separate index be built at the sub-word level and then

expanded to allow for matching OOV terms. Such a process, while

accurate, is expensive in both time and memory. In the proposed ar-

chitecture, a word-level confusion network (CN) based index is used

for both IV and OOV search. This is implemented using a flexible

WFST framework. Comparisons on 3 Babel languages (Tagalog,

Pashto and Turkish) show that CN-based indexing results in better

performance compared with the lattice approach while being orders

of magnitude faster and having a much smaller footprint.

Index Terms— keyword search, spoken term detection, key-

word spotting, audio indexing, confusion networks

1. INTRODUCTION

One of the fundamental problems in automatic speech processing is

finding a spoken or written term in a collection of audio recordings.

Given the vast amount of existing spoken information, with more be-

ing produced every day, there is an increasing need for small indices

and fast search.

Typically, state-of-the-art spoken term detection (STD) systems

work in two phases (1) transforming the speech into text format us-

ing an automatic speech recognition system (ASR), and (2) building

an index from the text. The simplest textual format is the 1-best hy-

pothesis from the ASR system. This approach will result in good

STD performance if the speech recognition system has low word

error rate. But most state-of-the-art STD systems benefit from hav-

ing a richer ASR output representation. Several retrieval methods

dealing with multiple hypotheses from an ASR system have been

proposed, with lattices and confusion networks [1] being frequently

used for building STD indices [2, 3, 4, 5, 6, 7, 8, 9, 10]. The draw-

back of this approach lies in its inability to find terms that are not

in the dictionary of the speech recognizer. Approaches based on

sub-word units (phone, graphone, syllable, morph) are widely used

to solve the OOV issue. Retrieval consists of searching for the se-

quence of sub-words representing the OOV term in a sub-word in-

dex. Popular approaches are based on search in sub-word decoding

output [6, 11, 12] or search on the sub-word representation of the

word decoding [13, 5]. To compensate for the errors made by the

ASR system, the query term can be expanded using a sub-word con-

fusability model [13, 14]. Since subword-based indices generally

yield a lower precision for IV queries compared with word-based

ones, the word and subword indices are either used separately for

IV and OOV search, respectively [13, 5], or combined into one in-

dex [7, 15].

In this work we describe a Weighted Finite State Transducer

(WFST) STD architecture in which a word index created from CNs

is sufficient for high-performance IV and OOV retrieval. By replac-

ing lattices with confusion networks which are much smaller, and

eliminating the need for sub-word units in the index, we ensure a

very small footprint index. The organization of this paper is as fol-

lows: Section 2 and 3 describe the indexing and search in the pro-

posed architecture. An overview of the task, metric, and ASR system

used for indexing is given in Section 4. Section 5 shows our experi-

ments and results and we conclude in Section 6.

2. CONFUSION NETWORK BASED INDEXING

In this section we describe the CN-based WSFT word index which

will be used for both IV and OOV keyword search. CNs have a lin-

ear structure, representing the competing word hypotheses and their

posterior probabilities in consecutive time intervals (confusion bins).

A word index containing all the information needed for keyword

search (audio file identity, start time, end time, and word label) is

constructed from confusion networks using the following steps.

1. Each CN produced by an ASR system is compiled into a

weighted finite state transducer (CN FST) having the same

topology, input labels that are the words on each arc in the

CN, output labels that encode the start time (Tstart) and end
time (Tend) of each arc as Tstart−Tend strings, and costs

that are negative log CN posteriors for each arc. Some bins

in a CN have deletion/epsilon (eps) arcs. Silence, hesitations

and other filler words are not written into the index; instead,

they contribute to the posterior probability of these epsilon

arcs. I.e., the score of a deletion in a bin will be 1 minus the

sum of posteriors of real words, and any skip over a CN bin

will be penalized according to this.

2. In order to be able to access any substring of words in the

CN FST i produced in the previous step, we add a new start

node, Si, with zero-cost epsilon-arcs connecting Si to each

node in i, and a new end node, Ei, with zero-cost epsilon-

arcs connecting each node in i to Ei.

3. The final single index is obtained by creating a new start node,

S, that is connected to each Si by zero-cost arcs with input la-

bel epsilon and output label i (or audio file id), and a new end

node, E, that is connected to each Ei by zero-cost epsilon-

arcs.

Figure 1 shows the CN-based index. Having this structure, one can

retrieve any word or sequence of words from the original CNs, and

the corresponding time interval and audio file id. This approach is

similar to the indexing approach described in [13], in which the focus

was lattice indexing.
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Fig. 1. CN-WFST index.

3. SEARCH

3.1. In-Vocabulary search

Given the linear structure of the CNs, searching for an in-vocabulary

keyword is straightforward, similar to searching in the 1-best hy-

pothesis of the recognizer. The only difference comes from multi-

word queries, which will be found in consecutive positions in the

case of the 1-best hypothesis, while they could be found in non-

consecutive bins in a CN. In [16] it is mentioned that CNs might

not be appropriate for multi-word query search due to the presence

of epsilon links. A WFST framework deals with these issues in an

elegant way; when multi-word queries are found in non-consecutive

bins, their score is decreased according to the probability of the tra-

versed epsilon links. Thus, the epsilon arcs in the index WFST con-

trol which bins can be skipped in a confusion network and with what

penalty. Also, the semiring chosen for building the index will spec-

ify the method for combining the scores of the word components for

a multi-word query. If we choose a Log semiring then the scores will

be added (i.e. posteriors will be multiplied), or if we choose a Min-

Max semiring, the minimum score will be chosen as the score for

the entire keyword. The IV search consists in the following steps:

1. The query is converted into a word automaton.

2. The query automaton is composed with the index transducer.

3. Due to the epsilon arcs in the index, the composition will pro-

duce sometimes multiple overlapping hits for a query; among

those we keep only the one with the highest score.

The output labels in the resulting FST contain everything that is

needed to locate the hit: the audio file id and the start/end time.

3.2. Out-of-vocabulary search

The OOV search is very similar to the IV one: the only extra step

needed is the conversion of OOV keywords into in-vocabulary words

which sound similar. For this extra step we need three transducers:

(1) a word to phone transducer (W2P) which is created using a let-

ter to sound model for OOV words and the ASR lexicon for the IV

words (for the case in which the multi-word OOV has IV compo-

nents), (2) a phone confusability transducer (P2P) which specifies

pairs of confusable phones and the probability of the confusion, and

(3) a phone to word transducer (P2W) built using the ASR lexicon.

After creating these transducers, the OOV search consists of the

following steps:

1. Compose the automaton corresponding to the OOV word

query with W2P, converting it into a phone automaton P

2. Compose P with P2P, creating an FST which contains all the

alternate phone sequences according to the confusion model

3. ExtractN -best paths, thus keeping only the most likely phone

sequences

4. Compose the result with P2W

An alternate architecture can be obtained by swapping the last two

steps, although, it was found to have worse performance.

The result of the last step is a set of in-vocabulary word se-

quences that can be searched for in the word index as a proxy for

the OOV keyword which has no chance to be found. Note that if we

use the identity P2P, the final FST contains the decompositions of the

OOV word into sequences of IV words, if they exist. For example,

if meanwhile is the OOV word, and if mean and while are in vocab-

ulary, we would search for mean while. Figure 2 shows an example

for the type of word sequences we are searching for in place of the

OOV word Iraqi. Some of the sequences will be searched for with

no penalty, due to the fact that they share a baseform with the OOV

word.

      OOV keyword:    Iraqi

IV words to search for instead:

No penalty: With penalty

cost=3.7030

I rock u

I rock you

iraq you

iraq yu

ha ra cue

ha rock 'yo

ha rock you

uh rock u

Fig. 2. OOV to IV mapping example for Tagalog

In prior work, a multi-word query is considered OOV if at least

one word component is not in the vocabulary. In this situation the

query expansion module will expand all the words in the query re-

gardless of their IV/OOV status. In our OOV processing module,

we could slightly change the transducers involved in processing the

OOV query such that only the OOV query components are expanded,

while the IV words are kept the same. The new W2P will contain an

identity mapping instead of word-to-phone expansion for IV words.

In the P2P and P2W transducers we add a word identity mapping.

This procedure has multiple benefits: (1) for a fixed N -best value,

we get many more hypotheses for the actual OOV words, due to the

fact that we eliminate the confusions for the IV words, and (2) for

most tasks, applying a confusability model for the IV words results

in loss of precision.

Figure 3 shows the proposed system architecture (CN-STD).

3.3. Score Normalization

As shown in [17], the posting list scores have to be normalized in

order to improve performance. For this work we use the same nor-

malization as in [17], with the following slight modification. It is

known that high word posteriors in a confusion network are very

strong indicators that the word is correct [18]. Therefore we change

the normalization such that all the words with a posterior probability

above a certain threshold keep their original unnormalized score.
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Fig. 3. The architecture of the CN based STD

4. DATA AND ASR SYSTEM DESCRIPTION

We conducted our experiments in the context of the IARPA Ba-

bel program [19], which focuses on spoken term detection for low-

resource languages. We chose the limited language pack track (LP)

of the program, in which only 20 hours of audio, (10 hours of tran-

scribed data) is used for building ASR models and lexicons, making

it more interesting for OOV keyword search. In this paper, we fo-

cus on 3 of the languages used under this program, namely, Pashto

(Pashto LP), Tagalog (Tagalog LP) and Turkish (Turkish LP). For

comparison, we also show results for the full language pack track

for one language, Tagalog (Tagalog FP) in which training data con-

sists of 100 hours of speech. In preparation for the Babel evaluation

we received a dev set (DEV) for training, 20 hours of audio for each

language. After the evaluation NIST released references for a por-

tion of the evaluation data (10 hours), which we used together with

all the evaluation queries to create another set (EVAL). There are

many more queries in EVAL (1700-2100) compared to DEV (300-

600). We report results on both DEV and EVAL.

The metric used for the Babel program is Term-Weighted Value

(TWV), which was also used to evaluate systems in the NIST 2006

STD Evaluation [20]. We report keyword search performance in

terms of maximum Term-Weighted Value (MTWV) which is the best

TWV for all values of the decision threshold.

The acoustic model used in these experiments is the IBM

Speaker-Adapted DNN (SA DNN) system which uses a deep neu-

ral network (DNN) acoustic model with IBM’s standard front-end

pipeline [21]. The DNN takes 9 frames of 40-dimensional speaker

adapted discriminative features as input, contains 5 hidden layers

with 1,024 logistic units per layer, and has a final softmax out-

put with 1,000 targets. Training occurs in three phases: (1) layer-

wise discriminative pre-training using the cross-entropy criterion,

(2) stochastic gradient descent training using back-propagation and

the cross-entropy criterion, and (3) distributed Hessian-free training

using the state-level minimum Bayes risk criterion [22]. The lex-

icon was provided with the training data, and the vocabulary con-

tains only words from this data. The language model (LM) is a

trigram LM with modified Kneser-Ney smoothing trained only on

the acoustic transcripts. The lattices are produced using a dynamic

decoder [23], and confusion networks are generated from these lat-

WER Tagalog FP Tagalog LP Turkish LP Pashto LP

Lattice 1-best 53.7 63.9 65.0 65.3

CN 1-best 52.2 62.7 63.7 63.5

Table 1. WER comparison for lattice and CN 1-best.

tices. Compared to the original CN generation algorithm [1], we

used a faster version with the following differences: (1) the slow to-

tal order computation is replaced with a fast local order constraint,

(2) time overlap of the clusters to be merged is enforced, and (3) low

posterior links are not allowed to participate in the intra-word merg-

ing step. The new algorithm is 2-5 times faster than the original, and

more robust when the pruning threshold is very low (which is impor-

tant for STD tasks). Table 1 shows 1.3-1.5% absolute improvements

in WER due to the lattice to CN conversion.

For simplicity we present results for this acoustic model only,

given that it had the best STD performance among all the systems

built at IBM during the evaluation, though similar improvements are

obtained for a Gaussian-mixture model (GMM) or a speaker inde-

pendent DNN model.

5. EXPERIMENTS AND RESULTS

The OpenFST Library [24] is used for both indexing and search.

Among the semirings we compared for the task, we chose the Log

semiring which performed the best. Regarding the phone confusabil-

ity transducer, there are many methods for creating it [17, 25, 14].

The evaluation system used a simple method with the following

steps: (1) Create Viterbi alignments of the training data transcripts

using an acoustic model, (2) Decode the training data using the same

acoustic model and a unigram LM, and (3) Compute state-level con-

fusability by comparing the two sets of alignments from the ground

truth and decoding hypotheses, respectively. This is converted to

phone-level confusability. As a baseline for the CN based STD we

use a state-of-the-art lattice WFST STD architecture which we suc-

cessfully deployed in both DARPA RATS and IARPA Babel evalu-

ations [13, 17, 25, 26]. In this architecture a word index built from

lattices is used for IV search and a phone index is used for OOV

search, after the OOV queries are expanded using the phone con-

fusability transducer. We use the same phone confusability trans-

ducer for both lattice and CN approach. The number of N -best

phone sequences to be retained for each OOV word is optimized

separately for each framework. We compare with a strong base-

line, these are the systems that we submitted in the Babel evaluation.

Our results for Pashto (Table 2), Turkish (Table 3) and Tagalog (Ta-

ble 4), show that CN-STD performs the same or better for both IV

and OOV terms. This conclusion holds also for the full pack con-

dition in which the vocabulary is 3.5 times larger and the WER is

10% absolute better (Table 5). The new approach leads to up to 12%

relative MTWV improvement.

System
DEV EVAL

IV OOV ALL IV OOV ALL

Lattice-STD 0.2085 -0.0351 0.1846 0.2379 0.0481 0.2122

CN-STD 0.2312 0.0044 0.2107 0.2464 0.0567 0.2208

Table 2. MTWV comparison of the lattice and CN STD system on

Pashto LP.

7896



System
DEV EVAL

IV OOV ALL IV OOV ALL

Lattice-STD 0.4450 0.0591 0.3424 0.3320 0.0419 0.2610

CN-STD 0.4460 0.1001 0.3526 0.3331 0.0589 0.2646

Table 3. MTWV comparison of the lattice and CN STD system on

Turkish LP.

System
DEV EVAL

IV OOV ALL IV OOV ALL

Lattice-STD 0.2868 0.1601 0.2586 0.3441 0.0796 0.2511

CN-STD 0.2945 0.1601 0.2639 0.3452 0.0799 0.2512

Table 4. MTWV comparison of the lattice and CN STD system on

Tagalog LP.

System
DEV EVAL

IV OOV ALL IV OOV ALL

Lattice-STD 0.5281 0.1636 0.5021 0.5673 0.1079 0.5273

CN-STD 0.5426 0.2880 0.5249 0.5718 0.1307 0.5330

Table 5. MTWV comparison of the lattice and CN STD system on

Tagalog FP.

Regarding the speed and size of the proposed architecture, Ta-

ble 6 shows that the CN-STD is orders of magnitude smaller and

faster than the lattice STD. Note that the search time difference is

much larger for the LP track which has 4 times more OOVs, and

therefore many more FST compositions with the large phone-level

index.

System Indexing Time Search Time Index Size

Tagalog LP
Lattice 576 mins 7233 mins 4264 Mb

CN 8 mins 360 mins 201 Mb

Tagalog FP
Lattice 548 mins 468 mins 3346 Mb

CN 5 mins 60 mins 157 Mb

Table 6. Running time and footprint comparison for a DEV+EVAL

run (3963 queries searched in 30 hours of audio) for Tagalog.

For both IV and OOV posting lists we can eliminate the hits with

scores below a certain threshold (for example 1e-07 for IV and 1e-08

for OOV) before normalization. This thresholding not only reduces

the size of the final posting list, but occasionally results in small

improvements in performance. Alternate methods for computing the

scores of the multi-word query hits are proposed in [15, 8]. In [15]

the posterior probability of a word is multiplied by the inverse of the

rank r of the word in a confusion bin. [8] reports that 1/r by itself

works as well if not better. We compared these alternate strategies

on the Tagalog FP task. Table 7 shows that the rank by itself works

surprisingly well, but none of these alternate strategies work better

than using the posterior probability by itself. It could be that other

combinations of the posterior probability and rank work better, this

is something to explore in the future.

System
DEV EVAL

IV OOV ALL IV OOV ALL

Posterior 0.5426 0.2880 0.5249 0.5718 0.1307 0.5330

Posterior/r 0.5347 0.2458 0.5145 0.5691 0.1258 0.5282

1/r 0.5142 0.2302 0.4939 0.5640 0.1338 0.5265

Table 7. MTWV comparison for various scoring strategies for Taga-

log FP.

Recently, it has been shown that the best STD performance is

obtained by combining systems using diverse ASR models [17]. The

proposed architecture is especially beneficial for such approaches.

For a given set of queries, after the one-time conversion of the OOV

queries to IV sequences, the only remaining step is a composition

of this FST with the small word CN index for each ASR system. In

comparison, each phone-level OOV FST is composed with the large

phone-level index corresponding to each ASR component for the

baseline lattice approach, which is a time-consuming process. For

a 5-system combination for the Tagalog FP system, we reduced the

total indexing time from 43 hours to 30 minutes, and the search time

from 90 hours to 3 hours. By eliminating all the phonetic indexes

for the 5 ASR systems and replacing the word lattice indexes with

the much smaller CN indexes, we obtain a index which is 25 times

smaller than the original.

6. CONCLUSION AND FUTUREWORK

We describe a WFST STD architecture in which a word index cre-

ated from confusion networks is sufficient for high-performance

open vocabulary term retrieval. For each OOV term we find the se-

quences of IV words which could substitute it in the search process.

In this paper we used phone confusability transducer as the vehicle

for query expansion, although this could be replaced with any other

sub-word confusability transducer. The resulting index is very small

while improving performance on a variety of languages and condi-

tions. For languages with unreliable word segmentation (Cantonese,

Vietnamese, etc), there is a simple extension to the current indexing

technique to be able to retrieve any subpart of a hypothesized word

in a CN. We will address this category of languages in future work.
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