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ABSTRACT

In this paper we describe the Vietnamese conversational telephone
speech keyword spotting system under the IARPA Babel program
for the 2013 evaluation conducted by NIST. The system contains
several, recently developed, novel methods that significantly im-
prove speech-to-text and keyword spotting performance such as
stacked bottleneck neural network features, white listing, score nor-
malization, and improvements on semi-supervised training methods.
These methods resulted in the highest performance for the official
IARPA Babel surprise language evaluation of 2013.

Index Terms— stacked bottleneck neural network features, key-
word spotting, white listing, score normalization

1. INTRODUCTION

Keyword spotting (KWS) is the task of detecting the occurrences
of words in a speech signal. State-of-the-art KWS systems cou-
ple speech-to-text (STT) technology with traditional text-matching
techniques [1]. A detailed survey of existing KWS techniques can
be found in [2, 3].

In this paper, we present a keyword spotting system for conver-
sational telephone speech that BBN constructed in response to the
NIST Babel Surprise Language evaluation of 2013. The system con-
tains several, recently developed, novel methods that significantly
improve STT and KWS performance. Acoustic feature extraction is
based on a Stacked Bottleneck (SBN) neural network (NN) archi-
tecture [4] that significantly outperforms PLP and Bottleneck (BN)
features. Improvements on semi-supervised training via confidence
weighted training, semi-supervised discriminative training and semi-
supervised multilayer perceptron (MLP) training are described that
help semi-supervised training for low resource languages and high
WER environments [5].

In addition to improving fundamental automatic speech recogni-
tion (ASR), we also advanced the core KWS technology, which goes
well beyond ASR technology. The novel methods used in the KWS
component of the system are designed to improve keyword recall
and keyword score accuracy. Typically, in order to increase keyword
recall, we look for hits for the keywords in the recognition lattice,
which provides many alternatives. We can increase the beam width
in the search and increase the depth of the lattice, but this can quickly
increase the computation and memory to an unacceptable point. An
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alternative solution to this problem is to inform the recognizer of the
set of keywords and protect those keywords from being pruned out
so that they almost always be in the lattice if they were actually spo-
ken. We call this list of keywords a white list [6] in that these words
are (almost) always accepted, albeit with a low score. In this paper,
we introduce a new extension to white listing that can be applied in
situations where the keywords are not known prior to decoding.

Another challenge we addressed was to produce a score for each
hit that is consistent across all keywords. Score normalization, based
on a machine-learning framework [7], produces scores that are com-
mensurate across keywords. This significantly improves KWS accu-
racy and benefits many applications of KWS such as Boolean queries
and word clouds for summarization.

2. SPEECH RECOGNITION COMPONENT

2.1. Acoustic Features

Neural networks were used to generate BN or SBN features [8]. A
detailed description is available in [4]. The SBN structure contains
two NNs: the BN outputs from the first one are stacked, downsam-
pled, and taken as an input vector for the second NN. This second
NN has again a BN layer, of which the outputs are taken as input
features for the recognition system. The input features of the first
NN are 15 critical-band energies obtained with a Mel filter-bank,
with conversation-side-based mean subtraction applied. 11 frames
of these features are stacked and a Hamming window multiplies the
time evolution of each parameter. Finally, DCT is applied, of which
0th to 5th coefficients are retained, making the size of the feature
vector 15× 6 = 90.

The sizes of the both NNs were set to 1M weights for most of
the experiments. When the best input features, structure and normal-
ization were found, NN sizes were increased to 2M weights. Both
NNs were trained to classify phoneme states (3 states per phoneme).
These targets were generated by forced alignment with baseline PLP
models and stayed fixed during the training. The final feature stream
was built by concatenation of PLP-HLDA (39 dimensions), SBN
(30) and pitch along with the first and second derivatives (3) adding
up to final dimensionality of 72. Then, region dependent transfor-
mation (RDT) [9] is performed to estimate a discriminative feature
projection to reduce the dimension to 46.

2.2. Acoustic and Language Modeling

The ASR system uses BBN’s Byblos speech recognizer [10] which
models speech as the output of context-dependent phonetic Hidden
Markov Models (HMMs). The outputs of the HMM states are mix-
tures of multi-dimensional diagonal Gaussians. Different forms of
parameter tying are used in Byblos, including State Tied Mixture
(STM) triphone and State Clustered Tied Mixture (SCTM) quin-
phone models. The mixture weights in both these cases are shared
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based on decision tree clustering using linguistic rules using pho-
netic questions.

Decoding is carried out in a multi-pass search strategy. The for-
ward pass uses a STM model and a bigram language model, and
outputs the most likely wordends at each frame together with their
scores. The backward pass then uses the output of the forward pass
to guide a Viterbi beam search with a SCTM within-word quinphone
acoustic model and a trigram language model. A lattice is also gener-
ated. Finally, we do lattice rescoring using a SCTM cross-word quin-
phone model. The top scoring hypothesis represents the system’s
recognition output. The acoustic model is a speaker adaptive model
[11] trained discriminatively under the boosted maximum mutual in-
formation (BMMI) criterion [12]. The language model (LM) is a
word-based trigram LM with modified Kneser-Ney smoothing.

3. SEMI-SUPERVISED TRAINING

One of the main goals of the IARPA Babel program is rapid de-
velopment of speech technologies for new languages with limited
resources. Under the Limited training condition, the program pro-
vides 10 hours of transcribed audio and under 100 hours of untran-
scribed audio. Semi-supervised training provides a mechanism for
improving system performance using unsupervised (untranscribed)
data given a relatively small amount of supervised (transcribed) data.
The basic approach for semi-supervised training is first building a
bootstrap model using some supervised data, and then using this
model to transcribe the unsupervised data. This automatically tran-
scribed data is then used to supplement the supervised data for build-
ing the final model.

The initial supervised systems under the limited transcribed data
condition often have over 70% word error rate (WER). Since the
performance of the bootstrap system is particularly poor, the auto-
matic transcription may contain mostly errors. In addition, using
transcriptions with high error rates may have more impact on dis-
criminative training, which tries to minimize the errors against the
reference transcriptions. The difficulties of semi-supervised discrim-
inative training have been discussed in [13, 14, 15].

Therefore, we revisited semi-supervised training and introduced
three techniques to address this acute condition: (i) a confidence
weighted training method which uses a confidence model to select
data and also weighs the supervised and unsupervised data, (ii) a
semi-supervised discriminative training technique that handles the
errors in the automatic transcriptions, and (iii) a semi-supervised
MLP training for acoustic feature extraction. A detailed description
of the semi-supervised techniques is available in [16].

3.1. Confidence Weighted Training

Figure 1 is an overview of the confidence weighted training. This
training procedure consists of two parts: (1) unsupervised data se-
lection followed by (2) semi-supervised acoustic model training.

Fig. 1. Overview of the confidence weighted training.

The data selection procedure for semi-supervised training is de-
scribed in [5]. First, the untranscribed audio data is segmented into
utterances using a speech activity detection system which is trained
on the 10-hour training corpus using an architecture similar to [17].
It is then decoded using the system trained on the same 10-hour man-
ually transcribed corpus. The confidence of each utterance is com-
puted based on a confidence model trained on the development set.
Finally, the best half of the utterances are selected according to their
confidence scores for acoustic model training.

The utterance based confidence scores are then converted into
weights based on wi = s × ci + b where wi is the weight for ut-
terance i, s the slope, ci confidence score for utterance i, b the bias.
In this work, s is 2.0 and the average of the utterance-level weights

is constrained to one. Hence, b = 1 −
PN

i=1 s×ci

N
with N being the

total number of utterances. The posterior probabilities used in train-
ing are then multiplied by these weights, so utterances with lower
confidence would contribute less to the collective statistics.

3.2. Semi-supervised Discriminative Training

Our proposed semi-supervised discriminative training aims to focus
on the supervised data, for which errors can be accurately located.
While the small amount of supervised data may not allow us to esti-
mate the model parameters reliably, we use the unsupervised data as
a constraint to control the optimization. Figure 2 is an overview of
our semi-supervised discriminative training.

Fig. 2. Overview of semi-supervised discriminative training.

The idea is to enforce the output model to be close to the es-
timate using the entire data set, which is likely to be more robust.
This is achieved by first estimating the model using the entire semi-
supervised set. Then, we adapt the model discriminatively using the
supervised data. Adaptation is performed via discriminative MAP
adaptation (DMAP) [18].

3.3. Semi-supervised Multi-layer Perceptron Training

The semi-supervised MLP training method consists of two stages:
The first stage is to train the MLP using only the supervised data.
This MLP is then used to train an ASR system to filter and select un-
supervised data. The selected set is then used to train the final MLP.
We found that it was best to use all of the data rather than discard
the data with low confidences. Details of the semi-supervised MLP
training are available in [4, 19].

4. KEYWORD SEARCH COMPONENT

4.1. White Listing

A good ASR system is essential but not sufficient for building KWS
systems. An ideal KWS system should have high recall for every
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possible keyword. We recently introduced a simple but effective so-
lution to this problem, which is to inform the recognizer of the set of
keywords and protect those keywords from being pruned out so that
they will almost always be in the lattice if they were actually spoken.
We call this list of keywords a white list [6] in that these words are
(almost) always accepted, although possibly with a low score.

In order to avoid pruning errors, we implemented a white list
feature in the recognizer. During normal beam pruning, we compare
the score at a state with the score of the best hypothesis at that instant
and remove the state from consideration if its score is below some
threshold relative to that highest score (the beam). In this case, if the
state belongs to one of the words in the white list, the threshold is
much lower (a wider beam) so that it becomes very unlikely for this
keyword to be pruned out when it is in fact in the speech. This modi-
fication is made to all of the places in the decoder where any pruning
takes place. Even though the computation for the keywords is in-
creased by a large factor, the overall computation does not increase
by much, since the number of keywords is typically much less than
the number of words in the decoding lexicon.

In situations where the keywords are not known in advance we
typically run recognition using only the provided dictionaries. Since
we do not know the keywords, we cannot white list them. However,
in order to make sure the system will be able to find the keywords
later, we want to make sure we have a substantial number of hits for
most of the lexical items. As a natural extension, the white listing
can be generalized to apply to any lexical term. Adding all the lex-
ical terms in the white list is equivalent to increasing the beam and
the depth of the lattice which is impractical. Therefore, the system
should be able to automatically select a subset of the lexical terms to
be included in the white list so that we have a substantial number of
hits for most of the lexical items.

In this phase, the lexical term selection was based on the follow-
ing algorithm: We first run the KWS system on a transcribed held-
out set and perform keyword search for every lexical term. Then,
based on the KWS results, we add to the white list any lexical terms
that (a) appear in the audio and have low recall and low hits or (b)
do not appear in the audio and do not have a substantial number of
hits. The condition for adding a lexical term in the white list can be
expressed by the following expression

if(((Ntrue ≥ 1)AND(#hits < H1)AND(recall < R))

OR(#hits < H2)) (1)

where Ntrue is the number of reference occurrences of the word.
The thresholds R, H1, H2 are determined manually, for now, so that
the resulting white list size is kept reasonably low.

4.2. Keyword Search

The speech recognition system produces a detailed lattice of word
hypotheses. The resulting lattice is annotated with acoustic, lan-
guage and pronunciation model scores. Then a forward-backward
pass is applied on the lattice to estimate the posterior probability
for each word arc in the lattice. Word lattices are further expanded
to sub-word units, such as characters and phones, by splitting each
word into its sub-units. This allows for searching out-of-vocabulary
(OOV) words and words that were missed by the whole-word search.
Then, the lattices are converted to consensus networks (c-net) which
provide a simplified method for finding keywords as sequence of
phones or words. C-nets require orders of magnitude less storage for
indexing compared to lattices.

Recall can be improved significantly by allowing approximate
matches within the c-net to be returned by allowing substitutions,

deletions, and insertions with appropriate confusion penalty. The
target query represented by a sequence of units (phones, characters,
etc.) are aligned to the c-nets using dynamic programming [20]. A
confusion matrix, estimated on phone sequences from a c-net gener-
ated over training data, is used for keyword search. The score of the
keyword is taken as either the product or the geometric mean of the
scores of the individual posteriors in the c-net.

4.3. Score Normalization

Score normalization is the process through which the original scores
of the detections of different keywords are made commensurate with
each other. This is necessary in order to create global ranked lists of
hits, across all keywords, so that those hits which are ranked higher
have a higher probability of being correct. There are many applica-
tions of KWS that require comparable scores across keywords such
as Boolean queries and word clouds for summarization. Even when
we strive to get good estimates of keyword confidence, the confi-
dence scores for different keywords tend to vary systematically for
several reasons. Thus, to obtain state-of-the-art KWS performance,
it is essential to use score normalization.

Our most advanced score normalization method is based on
a machine-learning framework that utilizes many features. A de-
tailed description is available in [7]. The original scores of the
detections go through a number of transformations, such as: rank-
normalization, mapping-back to posteriors, “probability of correct”
normalization pcorr() and through some non-linear functions such
as log(), ()1/2, ()2, sigmoid. The pcorr() mapping is estimated
by sorting all hits by score, defining bins, and then computing the
probability that a random detection in the bin is correct. Then, the
transformed scores, together with various additional features, e.g.,
keyword training count, keyword length, conversation-aggregated
scores, are concatenated together into a feature vector. This vector,
together with a target variable denoting whether the detection is a
true positive or a false alarm, is given as input to Powells method
[21], which learns a linear model.

5. EXPERIMENTAL RESULTS

5.1. Data and Evaluation Conditions Description

The Babel training data is mainly conversational speech between two
persons on a telephone channel, but it also contains a small amount
of read speech. The telephone channels can be landlines, different
kinds of cellphones, or phones embedded in vehicles, and the sam-
pling rate is 8000 Hz. In the first year of the program Vietnamese
was chosen to be the language for open evaluation. This effort uses
the IARPA Babel Program Vietnamese language collection release
IARPA-babel107b-v0.7. The development set consists of roughly
10 hours of conversational telephone speech and the evaluation set
contains around 75 hours of data. The evaluation keyword list con-
sists of 4065 keywords. Each keyword may contain several words
and it may or may not be in the training vocabulary.

The evaluation has several different conditions that depend on
the amount and source of the training data sets and whether process-
ing of the audio after knowledge of the keywords was used or not.
In the full language pack (FullLP) condition, the training data con-
sist of 100 hours of transcribed audio. In the limited language pack
(LimitedLP) condition, the training data consist of a 10-hour subset
of the transcriptions and lexicon of the full language pack and all the
audio data of the full language pack. The lexicon was only from the
limited language pack and contained 3117 words. Another differen-
tiator depends on the knowledge of the keywords prior to decoding.
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In the no test audio re-use (NTAR) condition the system does not
reprocess the test audio after keywords are provided. In the test au-
dio re-use (TAR) condition the system re-processes the audio with
knowledge of the search keywords.

Accuracy is judged relative to a time-marked reference tran-
script. A system detection is considered correct if a corresponding
exact orthographic match of the term appears in the reference tran-
script within 0.5 seconds of the asserted time. System accuracy on
a given collection of query terms is measured by the Actual Term-
Weighted Value (ATWV) metric [22]

ATWV = 1− 1

K

KX
w=1

„
#miss(w)

#ref(w)
+ β

#fa(w)

T −#ref(w)

«
(2)

where K is the total number of keywords that occur in the test set,
#miss(w) is the number of true tokens of keyword w that are not
detected, #fa(w) is the number of false detections of w, #ref(w) is
the number of reference tokens of w, T is the total number of trials
(e.g., seconds in the audio), and β is a constant, set at 999.9.

5.2. MLP Features Results

An important contributing factor to our high performing ASR and
KWS system is the use of MLP features. The MLP features were
provided by our partners at Brno University of Technology (BUT).
Table 1 compares the PLP to the MLP front end, as described in Sec-
tion 2.1. Both systems are build according to the method described
in Section 2.2. The MLP features significantly improve performance
by 8.7% absolute in WER and 11.5% aboslute in ATWV.

Front End WER (%) ATWV
PLP 58.5 0.423
MLP 49.8 0.538

Table 1. PLP and MLP front end on the Dev set for FullLP NTAR.

5.3. White Listing Results

In this section we analyze the effectiveness of white listing, as de-
scribed in Section 4.1. We run the KWS NTAR system on the Dev
set and then searched for all lexical terms. Based on the keyword
retrieval results we selected 1500 lexical terms for white listing ac-
cording to the formula 1. For words that appear in the reference
transcripts we set the target recall level R to 70% and the minimum
#hits to 50 (H1). For words that do not appear in the references, we
require a minimum of 10 hits (H2).

Table 2 compares the ATWV, recall and c-net density (arcs per
second) statistics with and without white listing. The baseline sys-
tem does not use a white list but has higher than usual beam widths
for decoding and therefore generates big c-nets (122 arcs/sec). Even
so, the recall rate of the baseline system does not exceed 74%. More-
over, there are 257 keywords with no hits. By white listing the 1500
lexical terms we increase the recall to 84% and decrease the number
of keywords with no hits to 84. The c-net density increases by 30%
and the ATWV performance increases by 2% points.

The last two rows of Table 2 compare the performance of the
NTAR to the TAR condition by using white listing. Note that the
TAR condition assumes the knowledge of the keywords prior to de-
coding. Therefore, for the TAR condition, we add all keywords to
the white list. We observe that by using white listing for the NTAR
condition we are able to obtain half of the total gain obtained by
knowing the keywords prior to decoding. Therefore, the use of white
listing in the NTAR condition enabled us to reduce the gap between
the NTAR and TAR condition.

Configuration Recall C-net #kwds ATWV
(%) density w/o hits

w/o wl (NTAR) 74 122 257 0.538
w/ wl (NTAR) 84 155 84 0.558
w/ wl (TAR) 92 170 6 0.596

Table 2. White listing results on the Dev set for FullLP.

5.4. Score Normalization Results

Table 3 contains normalization results on the Test data for the FullLP
TAR condition. The row “Raw” shows the results obtained without
normalization (raw posteriors). The row “ML” corresponds to the
machine learning approach mentioned in Section 4.3. The normal-
ization method improves significantly over the raw posteriors.

ATWV
Raw 0.418
ML 0.530

Table 3. Score normalization results on the Eval set for FullLP TAR.

5.5. Semi-supervised Results

For the semi-supervised system, we first built a system using the
MLP features trained on the 10-hr supervised data. This system,
trained solely on supervised data, is used to transcribe the un-
supervised data. Then, we performed the confidence weighted
training, semi-supervised discriminative training and also the semi-
supervised MLP training for the final systems, as described in Sec-
tion 3. Table 4 shows the improvement of each technique in terms of
WER and ATWV. All keyword search results are under the known
keyword condition (TAR). The results show that semi-supervised
training can improve both speech recognition and keyword search
performance. Compared to the systems trained with only 10 hours
of supervised data, semi-supervised training improves the system by
5.1% absolute in WER and 6.2% absolute in ATWV.

System WER (%) ATWV
10-hr MLP sys. 60.3 0.394
+cw training 59.0 0.408
+semi. sup. DT 58.7 0.410
+semi. sup. MLP 55.2 0.456

Table 4. Semi-supervised results on the Dev set for LimitedLP TAR.

6. CONCLUSIONS

In this paper we described the conversational telephone speech
keyword spotting system under the IARPA Babel program for the
2013 evaluation. Recent advances in ASR technology are discussed
including stacked bottleneck neural network features and semi-
supervised training for low resource conditions. High performing
KWS systems go well beyond state-of-the-art ASR technology. Im-
portant factors for KWS are including the correct answer in the
lattice, via white listing, and generating meaningful scores via score
normalization. Our future work will focus on variable white listing
for finer control of the search and morphology and other sub-word
techniques for improving OOV KWS accuracy.
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neural network features for spontaneous Vietnamese in Babel,”
in submitted to ICASSP, 2014.

[5] J. Ma and R. Schwartz, “Unsupervised versus supervised train-
ing of acoustic models,” in Interspeech, 2008, pp. 2374–2377.

[6] B. Zhang, R. Schwartz, S. Tsakalidis, L. Nguyen, and S. Mat-
soukas, “White listing and score normalization for keyword
spotting of noisy speech,” in Interspeech, 2012.

[7] D. Karakos, R. Schwartz, S. Tsakalidis, L. Zhang, S. Ran-
jan, T. Ng, R. Hsiao, G. Saikumar, I. Bulyko, L. Nguyen,
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