
USING WORD BURST ANALYSIS TO RESCORE KEYWORD SEARCH CANDIDATES ON
LOW-RESOURCE LANGUAGES

Justin Richards1 Min Ma1 Andrew Rosenberg1,2

1 CUNY Graduate Center {jrichards, mma}@gc.cuny.edu 2 Queens College/CUNY andrew@cs.qc.cuny.edu

ABSTRACT

For low-resource languages, keyword search (KWS) remains
challenging due to the lack of training data. This work aims
to bolster KWS performance in low-resource languages by in-
corporating word burst information into the decision process.
We find that this information can improve performance when
we focus analysis on particularly problematic KWS candi-
dates: low-scoring correct hits, and high-scoring false alarms.

Index Terms— Keyword Search, Babel, Word Burst,
Spoken Term Detection, Low-resource Languages

1. INTRODUCTION

The goal of this work is to improve the accuracy of keyword
search (KWS) in conversational speech for low-resource lan-
guages. For languages that have adequate data for automatic
speech recognition (ASR), many KWS systems have been de-
veloped with near-optimal performance [1]. However, their
effectiveness depends heavily on the accuracy of transcrip-
tion, which in turn depends on the amount of training data and
language resources. Shortcomings emerge when dealing with
low-resource languages[2]. Despite the abundance of such
languages, their speech recognition output is rife with uncer-
tainty. To account for this the search for a given term returns a
large number of candidate locations with a range of assigned
likelihoods, most of them very low. Thus, even in current
state-of-the-art systems, transcription performance and con-
fidence estimation remain fairly inaccurate. We seek to im-
prove this output by extracting useful information from the
data which is currently not incorporated into the ASR acous-
tic and language models, and using this information to re-rank
the candidate hits. In this work we focus on so-called word
burst information. The assumption of word burst, or bursti-
ness, analysis is that once a word or phrase has been uttered
in a conversation, the probability of that phrase’s repetition is
higher than its marginal probability.

This work was supported by the Intelligence Advanced Research
Projects Activity (IARPA) via Department of Defense U.S. Army Research
Laboratory (DoD / ARL) contract number W911NF-12-C-0012. The data
used in our experiments is provided by the IARPA Babel Program language
collection release in 2013. Disclaimer:The paper should not be interpreted
as necessarily representing the official policies or endorsements, either ex-
pressed or implied, of IARPA, DoD/ARL, or the U.S. Government.

Our work with burstiness stems from an intuitive hypoth-
esis. A word like “burstiness,” which has a very low marginal
probability in the language, should have a far higher probabil-
ity in a discourse in which it has already been mentioned. We
begin our work with the assumption that keywords are likely
to be rare terms like “burstiness” and unlikely to be function
words like “the”, which are less affected by this burst phe-
nomenon. In preliminary analyses, we validate these assump-
tions by counting keyword occurrences in reference data.

Our work integrates this burstiness information into the
KWS system at the last stage, rescoring the decisions made
by the system. We work with a KWS system that outputs
hypothesized keyword locations in the form of a posting list.
For each keyword, a posting list contains a series of candidate
hits, each of which bears the properties beginning time, du-
ration, source file, and confidence score. In an ideal system,
every correct hit has a higher confidence score than every false
alarm. Our work aims to reassign confidence scores in an at-
tempt to move closer to this ideal. This means both lowering
the scores of false alarms and raising the scores of correct
hits. For this work, only the ranking of hits is important, not
the absolute score. Therefore, the evaluation metric used is
maximum term-weighted value (MTWV) — the efficacy of
KWS regardless of optimal threshold detection.

We use machine learning to rescore candidate KWS hits
based on word burst features extracted from the posting list.
Unlike most burst models [3, 4], which define burst only
in terms of word occurrence, we add additional burst based
features associated with ASR confidence scores and distance
proximity into our model. We classify the hit candidates
according to predicted correctness and rank (above or below
threshold). The confidence score of this class prediction pa-
rameterize a rescoring function which is then interpolated
with that candidate’s prior KWS score in order to gener-
ate new results. This approach effectively improves KWS
performance on low-resource languages.

2. PREVIOUS WORK

An essential component of KWS is the decision maker, which
examines each putative detection and determines whether it
is a correct hit or a false alarm [5]. Typically, it maps the
lattice-based features (e.g. ASR confidence) into a final KWS

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 7874

score [6]. This kind of approach relies on the quality of ASR
confidence scores. In the case of low-resource languages, we
seek additional information that can improve the robustness
of KWS to poor ASR performance and confidence estimates.
One source of such information is word burst.

To take advantage of word burst features, several meth-
ods have been proposed. If a word tends to appear in
bursts, its probability of occurrence will violate indepen-
dent observation assumptions [7]. Therefore, various esti-
mation methods of probabilities have been proposed. For
estimating the probability of positive adaptation, Church
and Gale [8] introduced a generalization of document fre-
quency and estimated the probability of recurring words
using: P (+adapt) = P (k ≥ 2|k ≥ 1) ≈ df2

df1
, where dfk

referred to the number of documents that contain a word se-
quence of length n > 0 for k or more times. However, this
method requires sufficient training data to reliably approxi-
mate P (+adapt); where data is limited this representation
will suffer. In 1997, Jelinek[9] proposed a cache language
model to incorporate word burst into a language model by
adapting the probabilities of a word after seeing it. In this
way, he developed a dynamic language model which can
model the actual documents more closely. The above ap-
proaches were designed for languages which have adequate
training data. Few investigations have been devoted to KWS
using word burst in low-resource languages. Recently, Chiu
and Rudnicky [2] boosted the scores of words that recurred
while penalizing words that occurred only once. Their work
proved that the word burst-based method is particularly effec-
tive in limited resource languages. While their work rescored
confusion networks (CNs), we make our improvements by
rescoring the posting list alone. Additionally, their rescor-
ing is based on direct adjustment of hit scores based on the
proximity of repeated hits, while this work uses a larger set
of burst-based features to optimize rescoring behavior. While
effective on 10 hour (LimitedLP) data sets, this approach
shows limited gains on 40 hours of data (FullLP).

3. METHODOLOGY

3.1. Data

The data for our experiments consists of conversational
speech provided by the IARPA Babel project from two low-
resource languages: Turkish and Vietnamese. The ASR
output we work with was trained on the full language pack
(FullLP) for each language, which contains approximately 80
hours of training data divided into files separated by speaker
into conversational sides. (Further data, consisting of scripted
speech, was also released but is not used in this work.) This
choice is significant because previous work with burstiness
rescoring saw nominal or no improvement on the FullLP[2].
Language packs for these languages include IARPA Babel
Program language collections IARPA-babel105b-v0.4 (Turk-
ish) and IARPA-babel107b-v0.7 (Vietnamese).

The data is divided into training, development (dev), and
evaluation partitions. Reference data is provided for the de-
velopment set so that posting lists can be scored for that data.
Separate sets of dev and evaluation keywords are also re-
leased. All data for this project is disseminated by the Na-
tional Institute of Standards and Technology (NIST) on be-
half of the Intelligence Advanced Research Projects Activity
(IARPA). NIST safeguards the reference data for the evalua-
tion set; however, in order to enable research on Babel data,
NIST has released a subset, designated “part one,” of the eval-
uation reference data so that researchers can perform local
tests after tuning on development data. All evaluation results
in this paper are generated from that ”evalpart1” subset.

The speech recognizer used in our experiments was the
IBM Speaker-Adapted DNN (SA DNN) system. The rec-
ognizer was trained using the FullLP training data and a
deep neural network (DNN) acoustic model with the standard
front-end pipeline [10].

3.2. Statistical Analysis

Empirical study of the Babel data validates the assumption
that a phrase’s likelihood will increase once that phrase has
been introduced to a conversation. To investigate these pat-
terns, we assemble a random subset of 200 dev keywords for
each language, then combine training and dev data and ana-
lyze the occurences of keywords in all of those conversations.
We find that the average marginal probability of a keyword’s
occurence in a conversation is orders of magnitude lower than
the average probability of keyword repetition within a con-
versation in both Vietnamese (1.4 ∗ 10−7 vs. 8.0 ∗ 10−6) and
Turkish data (1.4*10−6 vs. 1.7*10−5). In other such analy-
ses, we have observed a rapid falloff in this elevated probabil-
ity as the conversation moves farther from the initial utterance
of the keyword. That is, the burstiness effect decays rapidly
with time. This observation justifies our emphasis, in feature
engineering, on the distance between a target hit and neigh-
boring hits within a conversation.

3.3. Feature Extraction

We extract burst-related features for each target hit from the
posting list. These features are enumerated below, where t
represents the target hit, n is a neighboring hit candidate of
the same keyword in the same conversation, N is the num-
ber of all such neighbor hits, dist is distance in seconds be-
tween hits, score is the confidence score of t from word lat-
tices given by the ASR engine[11], and each feature descrip-
tion is followed by a bracketed feature count. Note that be-
cause each telephone conversation is split into two files, one
for each speaker, the features described in 3 - 6 are computed
twice: once for each speaker, and once for the entire dialogue.

1. keyword duration and start time (relative to the conver-
sation) in seconds.[1]

7875

2. ASR confidence score for t.[1]

3. the repetition count N . [2]

4. score(n)
dist(n,t) for the neighbor nwhich is closest in time to t.
This feature is also recalculated using log and square-
root distance. [6]

5.
∑N

i=1
score(ni)
|dist(ni,t)| . Variations are computed as above.[6]

6. maximum, minimum, mean and std. dev. of ASR con-
fidence scores over the set of all neighbor hits. [8]

3.4. Two-class rescoring

To generate the two class labels of correct hit (CORR) and
false alarm (FA), we evaluate a development posting list using
NIST’s Framework For Detection Evaluations (F4DE) tool,
which compares posting list candidates to reference data.
F4DE’s output includes an FA or CORR label for each hit in
a posting list. Our goal is to train a classifier to predict which
hits are CORR or FA based on word-burst features.

For all classification, we employ a logistic regression
classifier implemented by Weka[12], which provides the
best F-Measures on this data. We train our classifier on
posting lists from the dev set, and we tune parameters on
the dev set as well; testing is done on unseen evaluation
data. Because only about one-tenth of posting list candi-
dates are CORR, we address class imbalance problems by
appending a higher classification weight to feature vectors
with the CORR label. We search a range of possible val-
ues for these weights. Subject to the constraint that wFA +
wCORR = 1, we search for an optimal weighting by searching
wCORR ∈ [counttotal−countCORR

counttotal
, .5]. That is, the highest

weight is inversely proportional to the distribution of CORR
and FA entries. This parameter is used in training the classi-
fier, not in rescoring a posting list.

The classifier thus trained makes class predictions on the
development posting list, with each prediction assigned a
score on the interval of [0, 1]. We combine the original ASR
confidence and the new classification confidence with mixing
parameter η, as shown in the following formula:

Rb(t) =

{
s(t) ∗ (1− η) + r(t) ∗ η if t ∈ CORR
s(t) ∗ (1− η) + (1− r(t)) ∗ η if t ∈ FA

Rb(t) is the final new score for hit candidate t, s(t) is the base
ASR score for t, r(t) is the classifier confidence score for t’s
prediced class, and η indicates how much we assign to the
predicted scores. After rescoring the hypotheses, we apply
sum-to-one normalization to the set of hits for each keyword
before doing an evaluation. This is an attempt to make scores
compatible across keywords and is generally effective to im-
prove KWS performance [11]. We use a grid search to find
the optimal values of η and w

CORR
. Table 1 shows the opti-

mal parameters after tuning.

Language w
CORR

η
Vietnamese 0.62 0.1

Turkish 0.54 0.1

Table 1. Optimal two-class rescoring parameters.

3.5. Four-class rescoring
In observing the results of two-class rescoring, we note that
an excessive number of false alarms have their scores boosted.
Moreover, the two-class model is forced to lump very low-
and high-scoring correct hits together even though the optimal
rescoring behavior for these two may be different.

Correct relative KWS scores are more important than cor-
rect absolute scores. Increasing the score of a correct hit
will only improve KWS performance if its score is increased
higher than that of a false alarm. The two-class approach at-
tempts to boost the scores of all correct hits and reduce the
scores of all false alarms. However, if false alarms already
have low ASR-based scores, their scores do not need to be
reduced, and if a correct hits have high ASR-based scores,
their scores don’t need to be boosted. The posting list entries
that we care about are false alarms that have high ASR scores
and hits that have low ASR scores. Inspired by the rescor-
ing behavior necessary to improve KWS performance, we use
a 4-class classification rescoring approach. Thus, we define

Fig. 1. Definition of four-class labels and rescoring direction.

four classes: HighCORR, LowCORR, HighFA and LowFA
(cf. Figure 1.).As with the two-class method, we generate la-
bels by running a F4DE evaluation on baseline data, which
also returns the optimal decision threshold. We use this de-
cision threshold to split FA labels into HighFA and LowFA,
and we do likewise for correct hits.

Again, we use Weka’s logistic regression classifier to pre-
dict classes on the development set, and we output the full
distribution of all four class confidences. In rescoring, we
assign a weight wk to each of the four confidence scores.
The new weighted rescoring formula is defined as follows,
Rf (t) = (1− η) ∗ s(t) + η ∗

∑4
k∈C wk ∗ ck where s(t) is the

original score of a keyword hypothesis from ASR output and
C = {LowCORR, LowFA, HighCORR, HighFA}. We use a

7876

grid search to determine the optimal five-parameter tuple for
each language.

Table 2 shows the optimal parameters for each language
after a grid search. Boosting HighFAs, a strategy counter-
intuitive at first appearance, seems to have a salutary effect:
By raising high-scoring hits (of which HighFAs are the most
common) before STO normalization, we effectively push
down the scores of hits at the lower end of the distribution.
Among those scores pushed down are actual LowFA hits
which were erroneously boosted by the weight on LowCORR
predictions. In this way boosting HighFA-predicted hits
before normalization mitigates the errors made in boosting
LowCORR-predicted hits.

Language w
LC

w
LF

w
HC

w
HF

η
Vietnamese 0.6 0.0 0.0 0.4 0.1

Turkish 0.1 0.0 0.0 0.9 0.9

Table 2. Optimal four-class rescoring parameters where
Low/High are abbreviated L/H, and CORR/FA as C/F.

4. RESULTS

4.1. Classification-based Rescoring

We measure KWS performance using the evaluation measure-
ment defined by NIST for KWS evaluation, Term-Weighted
Value (TWV). TWV generates a weighted linear combina-
tion of P

Miss
and P

FA
such that false alarms are far more

costly than misses. A miss is defined as a correct hit that
falls below the decision threshold. The formula for TWV is
TWV (θ) = 1 − P

Miss
(θ) + β ∗ P

FA
(θ) where θ is the de-

cision threshold and β is a weight constant set to 999.9[1].
Maximum TWV (MTWV) is the score that results after a
search through possible thresholds is conducted and an op-
timal θ is chosen. KWS is also evaluated using Actual TWV
(ATWV) where a threshold is specified about which terms are
considered “hits”. ATWV calculation requires identification
of an optimal KWS score threshold. Our focus in this work is
on the optimal reordering of candidate hits rather than thresh-
old optimization. Thus, Table 3 displays MTWV on eval data
using the two- and four-class methods.

Language Classes Baseline Rescore % change
Vietnamese 2 0.2980 0.2942 -1.3
Vietnamese 4 0.2980 0.3002 +0.7

Turkish 2 0.4492 0.4532 +0.9
Turkish 4 0.4492 0.4560 +1.5

Table 3. Rescoring results on evaluation data.
Experimental results support two of our primary hypothe-

ses. First, four-class models outperform two-class models by
isolating the classes of hits for which rescoring is most impo-
rant: high-scoring false alarms and low-scoring correct hits.

Second, a machine learning algorithm is able to learn hit like-
lihood based on burstiness features.

The implications of these findings may apply to ASR as
well as KWS. A low-resource ASR system which incorpo-
rates burstiness information into its language model may im-
prove its accuracy. Indeed, one interpretation of our work is
that it addresses a gap in the ASR language model. A lan-
guage model typically calculates the probability of a word’s
occurrence using its position in short-range n-gram sequence.
Our work suggests that by using some simple, long-range
statistics about the word’s prior or future occurence in the dis-
course, a language model can be made more accurate.

4.2. Cross-Language Evaluation

Burstiness may be a universal feature of human conversa-
tion. Here we investigate the cross-language generalization
of four-class word burst rescoring. Results are shown in Ta-
ble 4. Indeed, we find cross-language testing produced better

Eval Language Baseline Rescore % change
Vietnamese 0.2980 0.3013 +1.1

Turkish 0.4492 0.4027 -10.4

Table 4. Cross-Language word burst rescoring.

results on Vietnamese than that language’s own model and pa-
rameters did. However, cross-language modeling in the other
direction reduces results on Turkish. We hesitate to suggest
that the Turkish model represents a language universal model
of word burst. It is possible that Turkish is more robust due to
the increased amount of training data (14k vs. 6k hits). This
does suggest that for low-resource languages, cross- or multi-
language training of word burst models might have a salutary
effect on keyword rankings.

5. CONCLUSION

In this paper, we describe an effective classification-driven ap-
proach to rescoring KWS results in Turkish and Vietnamese
using word burst information. We find that isolating hits that
are more likely to benefit from rescoring (low scoring correct
hits, and high scoring false alarms) allows us to rescore more
effectively than classifying correct vs. false alarm candidates.
In applying word burst rescoring models across languages,
we find some degree of language independence in the context
of these experiments. Determining the robustness of this in-
dependence is a direction for future work. We also plan on
investigating the role of morphology in word burst. Turkish
is morphologically rich, and burst analysis may be more ef-
fective on the morph rather than word level. Finally, we will
explore direct optimization of TWV in rescoring rather than
an exhaustive parameter search.

7877

6. REFERENCES

[1] J. G. Fiscus, J. Ajot, J. S. Garofolo, and G. Doddington,
“Results of the 2006 spoken term detection evaluation,”
2007, pp. 45–50.

[2] Justin Chiu and Alexander Rudnicky, “Using conversa-
tional word bursts in spoken term detection,” in INTER-
SPEECH, 2013.

[3] Jon Kleinberg, “Bursty and hierarchical structure in
streams,” Data Mining and Knowledge Discovery, vol.
7, no. 4, pp. 373–397, 2003.

[4] Rasmus E Madsen, David Kauchak, and Charles Elkan,
“Modeling word burstiness using the dirichlet distribu-
tion,” in Proceedings of the 22nd international confer-
ence on Machine learning. ACM, 2005, pp. 545–552.

[5] Javier Tejedor, Doroteo T Toledano, Miguel Bautista,
Simon King, Dong Wang, and José Colás, “Augmented
set of features for confidence estimation in spoken term
detection,” 2010.

[6] Frank Wessel, Klaus Macherey, and Ralf Schluter, “Us-
ing word probabilities as confidence measures,” in
Acoustics, Speech and Signal Processing, 1998. Pro-
ceedings of the 1998 IEEE International Conference on.
IEEE, 1998, vol. 1, pp. 225–228.

[7] Kenneth Ward Church and William A Gale, “Poisson
mixtures.,” Natural Language Engineering, vol. 1, no.
2, pp. 163–190, 1995.

[8] Kenneth W Church, “Empirical estimates of adapta-
tion: the chance of two noriegas is closer to p/2 than
p 2,” in Proceedings of the 18th conference on Compu-
tational linguistics-Volume 1. Association for Computa-
tional Linguistics, 2000, pp. 180–186.

[9] Frederick Jelinek, Statistical Methods for Speech
Recognition, Language, Speech, & Communication: A
Bradford Book. MIT Press, 1997.

[10] H. Soltau, G. Saon, and B. Kingsbury, “The IBM Attila
speech recognition toolkit,” in Proc. SLT, 2010, pp. 97–
102.

[11] Damianos Karakos et al., “Score normalization and sys-
tem combination for improved keyword spotting,” in to
appear in IEEE Automatic Speech Recognition and Un-
derstanding Workshop, 2013.

[12] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H Witten, “The
weka data mining software: an update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

7878

