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ABSTRACT

In the last years, the task of Query-by-Example Spoken Term Detec-
tion (QbE-STD), which aims to find occurrences of a spoken query
in a set of audio documents, has gained the interest of the research
community for its versatility in settings where untranscribed, multi-
lingual and acoustically unconstrained spoken resources, or spoken
resources in low-resource languages, must be searched. This paper
describes and reports experimental results for a QbE-STD system
that achieved the best performance in the recent Spoken Web Search
(SWS) evaluation, held as part of MediaEval 2013. Though not op-
timized for speed, the system operates faster than real-time. The
system exploits high-performance phone decoders to extract frame-
level phone posteriors (a common representation in QbE-STD tasks).
Then, given a query and a audio document, a distance matrix is com-
puted between their phone posterior representations, followed by
a newly introduced distance normalization technique and an itera-
tive Dynamic Time Warping (DTW) matching procedure with some
heuristic prunings. Results show that remarkable performance im-
provements can be achieved by using multiple examples per query
and, specially, through the late (score-level) fusion of different sub-
systems, each based on a different set of phone posteriors.

Index Terms— spoken term detection, phone posteriorgrams,
dynamic time warping, score calibration and fusion

1. INTRODUCTION

Spoken Term Detection (STD) is the task of finding occurrences of
a given query in a repository of audio documents. Usually, the query
is provided in textual form and audio documents involve a single
language for which there is plenty of resources to build Automatic
Speech Recognition (ASR) systems. Under these conditions, the
repository of spoken resources is indexed at the word level, includ-
ing time stamps and likelihood or confidence scores. When search-
ing for a given query, the STD system just accesses the index to
retrieve the locations of the most likely matches. In the case that
Out-Of-Vocabulary (OOV) words appear in the query, a word-level
index is not useful. Thus, a phonetic-level index is commonly built
to cover OOV words [1, 2, 3]. The NIST 2006 STD Evaluation [4]
attracted the interest of the research community for STD [5, 6, 7],
and its datasets are commonly used as benchmark for the devel-
opment of STD technology. More recently, the RATS project [8]
and the IARPA Babel program [9], specially through the NIST 2013
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Open KeyWord Spotting (KWS) Evaluation [10], have made avail-
able challenging datasets for increasingly difficult STD tasks (either
under extremely noisy conditions or dealing with low resource lan-
guages) [11, 12, 13].

On the other hand, Query-by-Example Spoken Term Detection
(QbE-STD) aims to find occurrences of a spoken query in a set
of audio documents. In the last years, Query-by-Example Spoken
Term Detection (QbE-STD) has gained the interest of the research
community for its versatility in settings where untranscribed, mul-
tilingual and acoustically unconstrained spoken resources must be
searched, or when searching spoken resources in low-resource lan-
guages. The need for QbE-STD arises when the spoken language is
unknown (or, equivalently, when multiple languages may appear) or
when there are not enough resources to build robust ASR systems
(as in the case of low-resource languages) [14, 15, 16, 17, 18, 19].

The Spoken Web Search (SWS) evaluations [20, 21], which
are part of the MediaEval Benchmarking Initiative for Multime-
dia Evaluation1, provide suitable benchmarks for the development
and evaluation of QbE-STD systems. In the latest edition, SWS
2013, the datasets featured 9 low-resourced languages, extracted
from different sources and using different recording setups, all the
signals being downsampled to 8 kHz. Two separate sets of around
500 queries, with one or more examples per query, were used for
development and evaluation. Two test conditions were defined:
required, on which only the basic query example was allowed to
find matches; and extended, on which all the available examples per
query could be used. A single set of audio documents (around 20
hours long) was used in all cases, with possible overlaps between
development and evaluation queries. System performance was pri-
marily measured in terms of Term-Weighted Value (TWV) metrics
(Average TWV, Maximum TWV and TWV DET curves), as is
commonly done in NIST STD evaluations [4, 10], but using a prior
which approximately fitted the empirical prior (Ptarget = 0.00015)
and two suitable false alarm and miss error costs (Cfa = 1 and
Cmiss = 100). Performance was also measured in terms of a newly
introduced normalized cross-entropy metric and the processing re-
sources (real-time factor and peak memory usage) required by the
submitted systems. For more details on the SWS task at MediaEval
2013, see [22][23].

In this paper, we describe the QbE-STD systems developed by
our research group (GTTS, http://gtts.ehu.es) for the SWS 2013 eval-
uation, one of which (submitted as primary) achieved the best perfor-
mance among all the submitted systems (from 13 sites worldwide).
Though not optimized for speed, our systems operate faster than
real-time and do not require too much memory (the peak usage in
SWS 2013 was around 300 MB). All of them are based on the same
approach and only differ in the feature set. The approach is simi-

1http://www.multimediaeval.org/
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lar to [24], but with some important differences. High-performance
phone decoders are applied to extract frame-level phone posteriors,
which is a common representation in QbE-STD tasks (also used in
[24]). A distance matrix is built for each pair (query, audio docu-
ment), distances being normalized so that they are all comprised in
the range [0, 1]. A Dynamic Time Warping (DTW) matching pro-
cedure is then applied which iteratively looks for the best crossing
path in the normalized distance matrix, using an auxiliary queue to
store the search intervals and applying several heuristics to prune the
search. The approach is described in more detail in Section 2. Ex-
perimental results are presented and briefly discussed in Section 3,
and conclusions are summarized in Section 4.

2. OVERVIEW OF THE QBE-STD APPROACH

The QbE-STD approach involves four main modules: (1) feature ex-
traction; (2) speech activity detection; (3) DTW-based query match-
ing; and (4) score calibration and fusion.

2.1. Feature extraction
The Brno University of Technology (BUT) phone decoders for
Czech, Hungarian and Russian [25] are applied to process both the
spoken queries and the audio documents. Note that BUT decoders
were trained on 8 kHz SpeechDat(E) databases recorded over fixed
telephone networks, containing 12, 10 and 18 hours of speech and
featuring 45, 61 and 52 units for Czech, Hungarian and Russian,
respectively. In each case, three of them are non-phonetic units that
stand for short pauses and noises.

Given an input signal, BUT decoders output the posterior prob-
ability of each state s (1 ≤ s ≤ S) of each unit i (1 ≤ i ≤ M) at
each frame t (1 ≤ t ≤ T ), pi,s(t), where M is the number of units,
S the number of states per unit and T the number of frames (at a rate
of 100 frames per second). The posterior probability of each unit i
at each frame t is computed by adding the posteriors of its states:

pi(t) =
∑
∀s

pi,s(t) (1)

Finally, the posteriors of the three non-phonetic units are added and
stored as a single non-speech posterior. Thus, the size of the frame-
level feature vectors is 43, 59 and 50 for the Czech, Hungarian and
Russian BUT decoders, respectively.

Note that the phone posteriors provided by these decoders are
just a characterization of the instantaneous content of a speech sig-
nal, with no relation to (nor dependence on) the actual sounds of the
language spoken in the analyzed signal. From this point of view,
any phone posterior representation can be regarded as language-
independent.

2.2. Speech Activity Detection
Given an audio signal, Speech Activity Detection (SAD) is per-
formed by discarding those phone posterior feature vectors for
which the non-speech posterior is the highest. The remaining vec-
tors, along with their corresponding time offsets, are stored for
further use, but the component corresponding to the non-speech unit
is deleted, since we consider it very unlikely that the non-speech
posterior can help to distinguish between speech sounds. Note that
non-speech frames are discarded discretionally with no smoothing,
so the resulting sequence of feature vectors may contain tiny islands
of speech.

Finally, if the number of speech vectors is too small, the whole
signal is discarded, to save time and to avoid false alarms (since
small segments of speech may very easily match word fragments).
For the SWS 2013 evaluation, that threshold was arbitrarily set to 10
(that is, 0.1 seconds).

2.3. DTW-based query matching
Given two SAD-filtered sequences of feature vectors corresponding
to a spoken query q = (q[1], q[2], . . . , q[m]) and a audio docu-
ment x = (x[1], x[2], . . . , x[n]) —m and n being the length of the
sequences—, the cosine distance between each pair of vectors, q[i]
and x[j], is computed as follows:

d(q[i], x[j]) = − log
q[i] · x[j]

|q[i]| · |x[j]| (2)

Note that d(v, w) ≥ 0, with d(v, w) = 0 if and only if v and w
are perfectly aligned and d(v, w) = +∞ if and only if v and w
are orthogonal. The distance matrix computed according to Eq. 2 is
further normalized with regard to the audio document x, as follows:

dnorm(q[i], x[j]) =
d(q[i], x[j])− dmin(i)

dmax(i)− dmin(i)
(3)

where:
dmin(i) = min

j=1,...,n
d(q[i], x[j]) (4)

dmax(i) = max
j=1,...,n

d(q[i], x[j]) (5)

In this way, matrix values are all comprised between 0 and 1,
so that a perfect match would produce a quasi-diagonal sequence of
zeroes. Note that this is a kind of test nomalization, since, given a
query q, distance matrices take values in the same range (and with
the same relative meaning), no matter the acoustic conditions, the
speaker, etc. of the audio document x. This normalization was found
to be key for achieving good performance in SWS 2013.

The best match of a query q of length m in an audio document
x of length n is defined as that minimizing the average distance in
a crossing path of the matrix dnorm. A crossing path starts at any
given frame of x, k1 ∈ [1, n], then traverses a region of x which is
optimally aligned to q (involving L vector alignments), and ends at
frame k2 ∈ [k1, n]. The average distance in this crossing path is:

davg(q, x) =
1

L

L∑
l=1

dnorm(q[il], x[jl]) (6)

where il and jl are the indices of the vectors of q and x in the align-
ment l, for l = 1, 2, . . . , L. Note that i1 = 1, iL = m, j1 = k1

and jL = k2. Two matrices, a and l, are defined, a[i, j] storing the
accumulated distance of the optimal partial crossing path ending at
(i, j), and l[i, j] the length of that path, so that a[i, j]/l[i, j] is the
average distance. These matrices are initialized as follows:{

a[i, 1] =
∑i

k=1 dnorm(q[k], x[1])
l[i, 1] = i

(7)

for i = 1, . . . ,m. The minimization operation goes from j = 2 to
j = n, and for each j, from i = 1 to i = m. This is accomplished
by means of a dynamic programming procedure, as follows:

i = 1 : {
a[1, j] = dnorm(q[1], x[j])
l[1, j] = 1

(8)

i > 1 :

Ω = {(i, j − 1), (i− 1, j), (i− 1, j − 1)}

(r, s) = arg min
(p,q)∈Ω

a[p, q] + δ(p 6= m) · dnorm(q[i], x[j])

l[p, q] + δ(p 6= m){
a[i, j] = a[r, s] + δ(r 6= m) · dnorm(q[i], x[j])
l[i, j] = l[r, s] + δ(r 6= m)

(9)
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Fig. 1. Example of the iterative DTW procedure: (1) the best match of q in x[1, n] is located in x[k1, k2]; (2) since the score is greater than
the established threshold T , the search continues in the surrounding segments x[1, k1 − 1] and x[k2 + 1, n]; (3) x[k2 + 1, n] is not searched,
because it is too short; (4) the best match of q in x[1, k1 − 1] is located in x[k3, k4]; (5) but its score is lower than T , so the surrounding
segments x[1, k3 − 1] and x[k4 + 1, k1 − 1] are not searched. The search procedure outputs the segments x[k1, k2] and x[k3, k4].

where:
δ(c) =

{
1 if c = True
0 if c = False

(10)

The expression δ(r 6= m) is introduced to account for the spe-
cial case, when i = m, of the best path to (m, j) coming from
(m, j − 1). In this case, the crossing path already ended at a previ-
ous j and no more distances are accumulated. Note also the special
case i = 1 (Eq. 8), which is always taken as a starting point, with
no accumulated distance from the past but only the distance for the
current frame: dnorm(q[1], x[j]). This procedure is Θ(n ·m · d) in
time (d: size of feature vectors) and Θ(n ·m) in space.

The detection score is computed as 1− davg(q, x), thus ranging
from 0 to 1, being 1 only for a perfect match. The starting time and
the duration of each detection are obtained by retrieving the time
offsets corresponding to frames k1 and k2 in the SAD-filtered audio
document.

This procedure is iteratively applied to find not only the best
match but also less likely matches in the same document. To that
end, a queue of search intervals is defined and initialized with [1, n].
Let us consider an interval [a, b], and assume that the best match is
found at [a′, b′], then the intervals [a, a′−1] and [b′ +1, b] are added
to the queue (for further processing) only if the following conditions
are satisfied: (1) the score of the current match is greater than a
given threshold T (for SWS 2013, T = 0.85); (2) the interval is
long enough (for SWS 2013, half the query length: m/2); and (3)
the number of matches (already computed + pendant) is less than a
given threshold M (for SWS 2013, M = 7). An example is shown
in Figure 1. Finally, the list of matches for each query is ranked
according to the scores and truncated to the N highest scores (for
SWS 2013, N = 1000).

2.3.1. Using multiple examples per query.

Under the extended (multiple examples) condition, only the exam-
ples passing SAD filtering (i.e. those with enough speech sam-
ples) are considered for each query. The longest example ql is then
taken as reference and DTW-aligned to the other available examples
q1, q2, . . . , qk. In this case, the usual DTW procedure is applied, just
to get the best alignment between two sequences of feature vectors
representing the same query. Let us consider the reference exam-
ple ql of length ml and another example qi of length mi, then the
alignment starts at [1, 1] and ends at [ml,mi] and involves L align-
ments, such that each feature vector of ql is aligned to a sequence of

vectors of qi. This is repeated for i = 1, . . . , k, such that we end
with a set of feature vectors Sj aligned to the feature vector ql[j],
for j = 1, 2, . . . ,ml. Then, each ql[j] is averaged with the feature
vectors in Sj to get a single average example, as follows:

qavg[j] =
1

1 + |Sj |

ql[j] +
∑
v∈Sj

v

 j = 1, 2, . . . ,ml (11)

Finally, the single average example obtained in this way is used
to search for query occurrences just as for the required (single ex-
ample) condition. This simple approach is computationally cheaper
than other options such as carrying out multiple searches and fusing
the results (as done in [24]).

2.4. Calibration and fusion of system scores

System scores are transformed according to [26], which is an adap-
tation of the discriminative calibration/fusion approach commonly
applied in speaker and language recognition.

First, the so-called q-norm (query normalization) is applied,
so that zero-mean and unit-variance scores are obtained per query.
Then, if n different systems are fused, detections are aligned so that
only those supported by k or more systems (1 ≤ k ≤ n) are retained
for further processing. This is known as majority voting validation
or filtering, with k being the majority parameter (for SWS 2013,
best performance was attained with k = 2).

Now, let us consider one of such validated detections, corre-
sponding to a query q; if a system A does not provide a score for it,
we must hypothesize one. Typically, we use the minimum score that
A has output for q. The same value is assigned to missed detections
and non-target trials. In this way, a complete set of scores is pre-
pared, which besides the ground truth (target/non-target labels) for a
development set of queries, can be used to discriminatively estimate
a linear transformation that produces well-calibrated scores that can
be linearly combined to get the fused scores. Note that the calibra-
tion/fusion model applied to the evaluation queries is estimated on
a different (independent) set of queries. Under this approach, the
Bayes optimal threshold —given by the effective prior (0.0148 for
SWS 2013)— is applied, so no further tunings are necessary. The
same procedure is applied to calibrate a single system (note that ma-
jority voting is not applied in this case). The BOSARIS toolkit [27]
has been used to estimate and apply the calibration/fusion models.
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3. RESULTS

Tables 1 and 2 show TWV performance on the required and extended
conditions of the SWS 2013 evaluation, respectively.

Table 1. Results using a single example per query.
dev queries eval queries

MTWV ATWV MTWV ATWV
CZ 0.273 0.272 0.259 0.257
HU 0.270 0.267 0.241 0.239
RU 0.249 0.245 0.242 0.240

CZ-HU-RU 0.360 0.359 0.346 0.344
Fusion 0.419 0.416 0.399 0.399

Table 2. Results using multiple examples per query.
dev queries eval queries

MTWV ATWV MTWV ATWV
CZ 0.304 0.300 0.297 0.294
HU 0.295 0.294 0.268 0.263
RU 0.284 0.282 0.280 0.278

CZ-HU-RU 0.404 0.403 0.383 0.379
Fusion 0.464 0.460 0.445 0.444
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multiple-eval (MTWV=0.4452, ATWV=0.4435)

Fig. 2. TWV DET curves for the fused system on the sets of devel-
opment and evaluation queries, using a single example and multiple
examples per query.

Four basic QbE-STD systems were developed as described in
Section 2, using the phone posterior features provided by the BUT
decoders for Czech (CZ), Hungarian (HU) and Russian (RU) and the
concatenation of them (CZ-HU-RU). In the latter case, the average of
the non-speech unit posteriors of the three BUT decoders was used
as non-speech posterior and applied for SAD. Finally, a fifth system
(submitted as primary to the SWS 2013 evaluation) was built by fus-
ing the four previous systems. In all cases, system scores are well
calibrated, as revealed by the ATWV being close to MTWV. Calibra-
tion and fusion parameters have been estimated on the development
set. This is why results are slightly better on the development set.
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Fig. 3. Performance, disaggregated per language, of the fused sys-
tem on the set of evaluation queries, using a single example and mul-
tiple examples per query.

As shown in Table 1, the early fusion of phone posterior features
in the CZ-HU-RU system yields a remarkable MTWV improvement
on the eval set, from 0.259 in the best case (CZ) to 0.346, meaning
more than 30% relative improvement. The fusion of the four ba-
sic systems provides an additional 15% relative improvement with
regard to the best basic system (CZ-HU-RU). This was the best per-
formance reported by a primary system in the SWS 2013 evaluation
(there was only a cross-site fusion, submitted as contrastive-late sys-
tem, that outperformed it).

On the other hand, as shown in Table 2, using multiple exam-
ples under the simple approach described above also led to remark-
able relative improvements in performance, ranging from 10% to
15% depending on the considered system and set of queries. The
fused system achieved MTWV=0.464 on the development set and
MTWV=0.445 on the evaluation set (quite close to the cross-site fu-
sion performance mentioned above). No other team reported such
improvements on the extended condition of the SWS 2013 evalu-
ation. Note also that the improvement is consistent along all the
operation points of the DET curves, as shown in Fig. 2.

Finally, the improvement in the extended condition is relevant
also because there were additional query examples for only two of
the six language families (Basque and Czech). As shown in Fig. 3,
the proposed approach did not hardly affect the susbsets with a single
example per query but clearly improved the performance on the two
sets for which there were additional examples available. Moreover,
the improvement is relatively stronger on the Czech subset (which
provided 10 examples per query) than on the Basque subset (which
provided 3 examples per query), meaning that higher improvements
can be expected (under the proposed approach) as more query exam-
ples are provided.

4. CONCLUSIONS

A high-performance QbE-STD system has been described and re-
sults on the two conditions of the SWS 2013 evaluation have been
reported to support the goodness of the approach. Based on our own
experience and also on the experience of other groups, the phone
posterior features, the SAD algorithm, the DTW distance matrix
normalization and the fusion approach are all key for attaining high
performance. Our current work involves finding ways of reducing
computational costs and developing new methods of exploiting the
availability of multiple examples per query, which will be compared
to other existing approaches in the literature.
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