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1 GIPSA-Lab, 11 rue des Mathématiques, F-38402 Saint Martin d’Hères, France
2 ONERA/DOTA, 2 Avenue Edouard Belin, F-31055 Toulouse, France
3 Faculty of Electrical and Computer Engineering, University of Iceland
4 Signal and Image Centre, Belgian Royal Military Academy (SIC-RMA)

ABSTRACT

The estimation of surface emissivity and temperature from
thermal hyperspectral data is a challenge. Methods that es-
timate the temperature and emissivity on a pixel composed
by one single material exist. However, the estimation of the
temperature on a mixed pixel, i.e. a pixel composed by more
than one material, is more complex and has scarcely been in-
vestigated in the literature. This paper addresses this issue by
proposing an estimator which linearizes the Black Body law
around the mean temperature of each material. The perfor-
mance of this estimator is studied using simulated data with
different hyperspectral sensor configurations and under var-
ious noise conditions. The obtained results are encouraging
and show an accuracy on the estimated temperature of 0.5 K
while using high spectral resolution sensor.

Index Terms— Temperature & Emissivity Separation
(TES), Linear Unmixing, Hyperspectral Sensors, Cramer-
Rao Lower Bound (CRLB)

1. INTRODUCTION

Hyperspectral image sensors provide images with a large
number of spectral bands in the reflective and/or the thermal
infrared domain. These images enable information about
different materials within the pixels and especially the abun-
dances, i.e. the proportion of each materials composing the
pixels.

The abundances are retrieved using unmixing models that
have been extensively investigated over the last decade [1, 2].
With an image acquired in the reflective domain, many un-
mixing methods have been designed (statistical [3, 4, 5] or
geometric [6, 7]) using various model of the radiance mixing
(linear [8, 9] or non-linear [10, 11]).

However, in the thermal infrared domain, the radiance is
function of the optical properties of the materials, like in the
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reflective domain, but also of the temperature of materials.
The main goal in thermal hyperspectral image analysis is to
retrieve both of these parameters: the emissivity and the tem-
perature. Due to the spatial variability of the temperature,
these unmixing methods do not perform well in the thermal
infrared domain.

The estimation of temperature and emissivity, an issue
refered as Tempereature and Emissivity Separation (TES),
can be interpreted as an illposed semi-blind source separa-
tion problem. Many TES methods are available but they
assume that either the pixel is pure [12, 13], i.e. composed
by only one material, or it is isothermal [14], i.e. composed
by one or more materials but at the same temperature; while
in real data, many pixels are mixed with various materials at
different temperatures [15, 16].

In this study, we developed a new method to estimate
temperatures on mixed pixels of a thermal hyperspectral im-
age using a three-steps procedure. The first step estimates
the abundance using a co-registered hyperspectral image ac-
quired in the reflective domain. Secondly, the emissivity and
the mean temperature of pure pixels selected from the abun-
dance map are estimated using conventional TES methods
[12, 13]. Eventually, we propose a new approach to retrieve
the temperature on mixed pixels thanks to the previous esti-
mation of the abundances and the emissivities.

The paper is structured as follows : the problem of esti-
mating the temperature on mixed pixels is introduced in sec-
tion 2 and the proposed estimator is detailed in section 3. The
first and the second order performances of the proposed esti-
mator are studied using simulated data in the section 4.

2. THE SPECIFIC CASE OF MIXED PIXELS

The first step consists in separating pure pixels (i.e. pixels
made of one single material, even if with non uniform tem-
perature) from mixed pixels (i.e. pixels made of different ma-
terials). The formula of the input signal with a mixed pixel in-
troduced in section 2.1 allows to write the Cramer-Rao Lower
Bound, presented in section 2.2.
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2.1. The Radiative Transfert Modeling on mixed pixels

At sensor level, the instrument measures a radiance Rλ(x, y)
which combines the atmosphere terms (the atmospheric
upwelling transmittance τλatm,↑ and the atmospheric up-
welling radiance Rλatm,↑) and the at-ground leaving radiance
RλBOA(x, y) (also called Bottom-Of-Atmosphere (BOA) Ra-
diance ) :

Rλ(x, y) = RλBOA(x, y) · τλatm,↑ +Rλatm,↑ + wλ(x, y) (1)

where wλ(x, y) represents the at-sensor noise. This noise
covers different kinds of noise such as the inaccuracies in the
instrumental calibration, the thermal noise, the atmospheric
correction noise and the truncation noise (signal accuracy at
0.01 W.m−2.sr−1.µm−1). Generally, it also includes the
spatial and the spectral variation on the atmospheric terms and
on the emissivity and the temperature inside of the pixel. This
noise is designed as an additive zero-mean gaussian noise
with a standard deviation at σλ.

Under the assumption that the linear mixing model well
approximates flat ground scenes at radiance level, the BOA
radiance may be written as follows:

RλBOA(x, y) =

M∑
i=1

(ελi ·Bλ(Ti)+(1−ελi ) ·Rλatm,↓) ·Si (2)

where the measured radiance is a function of the optical, the
thermal and the geometrical properties of the ground material
i. ελi is the emissivity, Ti is the temperature, Si represents
the abundance of the material in the pixel (x, y) and M is the
number of materials composing the pixel (x, y). In this work
we assume that τλatm,↑, R

λ
atm,↑ and Ratm,↓ the atmospheric

downwelling radiance, are known. Bλ(T ) is the Planck spec-
tral law at temperature T that is written as:

Bλ(T ) =
C1/λ

5

exp(C2/(λ · T ))− 1
(3)

whereC1 ≈ 1.19·108W.m−2.sr−1.µm4 andC2 ≈ 1.44·104

K.µm.

2.2. The Cramer-Rao Lower Bound

The parameter to be estimated is the vector temperature T ∈
RM of the materials composing the pixel. The signal used to
estimate this parameter is the BOA radiance after atmospheric
correction. Equations (1) and (2) lead to the formulation of
the equivalent noise wλBOA, a zero-mean gaussian noise with
standard deviation σλBOA = σλ/τλatm,↑.

The estimation theory [17] shows that a lower bound of
the variance of any unbiased estimator T̂i exists if the Proba-
bility Density Function (PDF) p(x;T ) satisfies the regularity
condition:

∂ln(p(x,T ))

∂Ti
= 0 ∀Ti (4)

This bound is called the Cramer-Rao Lower Bound
(CRLB) and is written as:

var(T̂i) ≥ [I−1(T )]ii (5)

where I(T )|l,k = −E
[
∂2lnp(x;T )
∂Tl∂Tk

]
is the Fisher Information

Matrix (FIM), l and k are any of the materials composing the
pixel. [I−1(T )]ii is the ith component of the inverse of the
FIM.

Equation (2) leads to this formulation of the FIM:

I(T )|l,k =

N∑
λ=1

αλl · αλk (6)

with αλi = 1
(σλBOA)

· Si · εi · ∂B
λ(T )
∂T

∣∣∣
Ti

for the ith material.

When the pixel is composed of only two materials, the
analytical expression of the CRLB (for T̂1) is:

V ar(T̂1) ≥

N∑
λ=1

(αλ2 )2

N∑
λ=1

(αλ1 )2 ·
N∑
λ=1

(αλ2 )2 −
(

N∑
λ=1

αλ1 · αλ2
)2 (7)

3. THE ESTIMATION OF TEMPERATURES

The proposed approach is to linearize the Black Body law
B(T x,yi ) around the mean temperature of each material.

The resulting estimator is introduced in section 3.1 and
the Condition Number of the FIM, presented in section 3.2, is
used to assess the stability of the solution.

3.1. The linearized estimation problem

The Black Body law is formulated in equation (3). Assum-
ing that the temperature of material i in a mixed pixel is close
to the mean temperature Ti estimated previously on pure pix-
els, the Black Body law in the BOA equation (2) can be lin-
earized around this mean temperature. The centered radiance
∆Rλj = RBOA(Ti)−RBOA(Ti) writes:∆Rλ1

...
∆RλN

 =


AT1

λ1
· · · ATMλ1

...
. . .

...
AT1

λN
· · · ATMλN

 ·
∆T1

...
∆TM

 (8)

withATiλj = εi ·Si · ∂B
λj (T )
∂T

∣∣∣
Ti

and ∆Ti = Ti−Ti. Note that

N is the number of sensor spectral bands. With N equations,
M ≤ N represents an overdetermined problem (with real
data, M � N ).

The linear unbiased estimator that minimizes the variance
of the estimation is commonly called the Best Linear Unbi-
ased Estimator (BLUE)[17] and writes:

∆T = (At ·C−1 ·A)−1 ·At ·C−1 ·∆R (9)
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with C the noise covariance matrix. Note that the matrix (At·
C−1 ·A) is the FIM of the equation (2).

3.2. The Condition Number of the problem

The condition number (CN) evaluates the impact of a varia-
tion on ∆R on the estimation of ∆T . With a high CN, the
estimation is ill-conditioned, i.e. a little variation of the BOA
radiance creates a high variation on the estimated ∆T .

Considering the Frobenius norm, the CN is the ratio be-
tween the maximum and the minimum of the eigenvalues of
the FIM. With a scene composed by 2 materials, an analytical
expression of the eigenvalues is found and the CN writes:

CN =

∑
(αλ1 )2 +

∑
(αλ2 )2 +

√
D∑

(αλ1 )2 +
∑

(αλ2 )2 −
√
D

(10)

with : D =
(∑

(αλ1 )2 −
∑

(αλ2 )2
)2

+ 4 ·
(∑

αλ1 · αλ2
)2

.
From (10), if αλ2 → αλ1 , then the minimum of the eiguen-

values tends to 0 and the CN → ∞. This may happen when
for example the emissivity and the temperature are the same
for both materials (this pixel is then seen as a pure pixel).

The CN decreases as the difference between emissivities
decreases. Of course, it is much easier to estimate the tem-
perature of a material when its emissivity has discriminent
absorption features.

Also note that the CN increases if the different abun-
dances are unevenly distributed within a pixel. Indeed, esti-
mating the characteristics (temperature) of one given material
from the global measurement is difficult if this given material
only marginally impacts this measurement.

4. THE STUDY OF THE ESTIMATOR BEHAVIOR

An expected error of 1.2 K to 1.4 K on the estimation
of temperature was obtained while applying the standard
MMD/TES method [13] for pure pixel of multispectral im-
age data and 0.3 K with hyperspectral image data [18, 15].
Unfortunately, it is not the case for mixed pixels with a lower
number of bands (N small) or with an ill-conditioned prob-
lem (CN high).

The error E studied in this section is the Root Mean
Square Error (RMSE) between the input temperature Ti and
the estimated temperature T̂i for all the materials i within a
given pixel.

E =

√√√√ 1

M

M∑
i=1

(Ti − T̂i)2 (11)

All the simulations are done on mixed pixels with 2 mate-
rials. By adding more materials in the pixel, the CN increases;
therefore the error E increases too.

The bias and the variance are studied in section 4.1 and
4.2 when the parameters (εi, Si, atmosphere) are well known.
However, in real conditions, some uncertainties remain on

Fig. 1. Evolution of the estimation error E in a mixed pixel
without instrumental noise. The error increases with CN and
with the input ∆T .

these parameters. The impact of a wrong estimation of those
parameters on the estimated temperatures is studied in section
4.3.

4.1. The bias of the estimator

Equations (1) and (2) illustrate that the measured at-ground
leaving radiance is a function of the atmospheric terms and
the ground parameters (ε,T ,S). Even by knowing the filtered
atmosphere, the temperature, the abundance of the materials
in the pixels and the N -bands filtered emissivity, the atmo-
spheric correction is not perfect and the sensors accuracy is
finite. Furthermore with the linearization (Eq. (2)), there is a
residual error induced by the Taylor approximation. It results
in an approximation of the BOA radiance, hence an approxi-
mation of ∆T .

These errors have small amplitudes and impact on the es-
timated temperatures when the CN is high. An error on the
estimation with a mixed pixel composed by 2 materials is sim-
ulated using the TASI sensor characteristics [19]. The mean
temperature is simulated between 280K and 310K, the abun-
dance between [25%/75%] to [75%/25%] and the emissivities
are extracted from the ASTER emissivity of man-made mate-
rials, vegetation and soils database [20]. Figure 1 shows the
errorE of the estimation with ∆T1,2 varying between 0K and
10K.

With ∆T = 0 K, the obtained error is below 2K in 96%
of the cases. This proportion drops to 55% when ∆T is be-
tween 5 and 10 K. This is limiting the validity of the proposed
estimator to reasonable situations, with ∆T ≤ 5 K, typically.

To summarize, this estimator performs well with a ∆T
varying from 0 K to 5 K. Please note that this study of the bias
was conducted without considering the instrumental noise ef-
fect. This effect is assessed in the following sections.
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Fig. 2. Evolution of the CRLB with the CN for different sen-
sors. The CRLB increases exponentially with the CN log.

4.2. The Cramer-Rao Lower Bound of the estimator

As explained in section 2.2, the CRLB is a lower bound of the
variance. For small variations of ∆T , equation (8) is a good
approximation. [17] shows that with a linear model and a
gaussian noise, the BLUE is the Minimum Variance Unbiased
estimator and the CRLB is reached. The study of the variance
of the estimator is then reduced to the study of the CRLB.

Figure 2 represents the CRLB for 3 sensors : the AHS
[21], with 9 bands between 8 to 12.5 µm and a standard devia-
tion of the instrumental noise of σλ ≈ .04W.m−2.sr−1.µm−1,
the TASI sensor [19], with 64 bands between 8 to 11.5 µm
and σλ ≈ .025 W.m−2.sr−1.µm−1, and the SEBASS sen-
sor [22], with 115 bands between 7.5 to 13.5 µm and σλ ≈
0.01 W.m−2.sr−1.µm−1. The other simulated parameters
(the mean temperature, the abundance, the emissivity) are the
same as in the section 4.1.

By increasing the quality of sensor (from AHS with low
SNR and low number of bands to SEBASS with high SNR
and high number of bands), a decrease of the CRLB is ob-
served. To separate the influence of the SNR and the num-
ber of bands, simulations have been conducted with the TASI
bands filter and the SNR of the 2 others instruments. The re-
sults show that with low SNR, the number of bands impacts
more than with high SNR.

The residual errors are assumed to be spectrally inde-
pendant. It means that by increasing the number of spectral
bands, more equations are adding to the estimation without
increasing the noise level, as illustrated in figure 2 when only
the number of bands increases.

Another point is that, in real condition, the emissivity and
the abundance are not well retrieved. The impact of uncer-
tainties on those two parameters is investigated in section 4.3.

4.3. The influence of inaccurate estimation of S & ε

To investigate the impact of these uncertainties, the simula-
tions are made on mixed pixels as described in section 4.1

Fig. 3. Evolution of the mean and three times the standard
deviation of the error E with the shift on the abundance. The
general observed trend is the increase of E with the increase
of the shift on the abundance.

with the TASI sensor and ∆T < 5 K. The input abundances
have been shifted with ∆S varying between -20% and 20%.
The input emissivity is the estimated emissivity after TES
method [13]. The standard deviation of the E < 0.5 K. 50
repetitions of each simulation have been done and the mean
of E is studied.

If the TES method does not well estimate the emissiv-
ity, there is no impact on the estimation of the temperatures.
Indeed, with no error on the abundance, the error E is 0.5 K.
When the error on the abundance increases, it highly degrades
the temperature estimation by more than 5 K with a shift on
the abundance of 10%. This is illustrated in figure 3.

From this study we can draw two conclusions. First, the
results validate the TES methods that estimate the emissiv-
ity with an error of .02 [15]. Secondly, a shift on the abun-
dance estimation has higher impact on the estimated temper-
ature than emissivity. It means that the success of the method
relies on a very accurate estimation of the abundance.

5. CONCLUSION AND PERSPECTIVES

This paper presents a new method to estimate the tempera-
ture in mixed pixels by first estimating the abundance on visi-
ble images and then the emissivity and the mean temperature
on pure pixel. This method, based on a linearization of the
Planck law around the mean temperature of each materials
present in the scene, shows encouraging results provided that
the abundance map of the materials is accurately estimated.

Further work will focus on the application of this method
using real data and the study of the blind approach, i.e. with-
out any prior knowledge about the materials abundance or the
emissivities.
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