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ABSTRACT

This paper addresses the problem of wall clutter mitigation in

compressed sensing through-the-wall radar imaging, where a

different set of frequencies is sensed at different antenna lo-

cations. A joint Bayesian sparse approximation framework is

first employed to reconstruct all the signals simultaneously by

exploiting signal sparsity and correlations between antenna

signals. This is in contrast to previous approaches where

the signal at each antenna location is reconstructed indepen-

dently. Furthermore, to promote sparsity and improve recon-

struction accuracy, a sparsifying wavelet dictionary is em-

ployed in the sparse signal recovery. Following signal re-

construction, a subspace projection technique is applied to

remove wall clutter, prior to image formation. Experimental

results on real data show that the proposed approach produces

significantly higher reconstruction accuracy and requires far

fewer measurements for forming high-quality images, com-

pared to the single-signal compressed sensing model, where

each antenna signal is reconstructed independently.

Index Terms— Through-the-wall radar imaging, wall

clutter mitigation, compressed sensing, joint Bayesian sparse

signal recovery.

1. INTRODUCTION

Through-the-wall radar imaging (TWRI) is an emerging tech-

nology that has attracted considerable research interest due

to its numerous civilian and military applications [1–3]. In

TWRI, the scene behind the wall is first interrogated by trans-

mitting wideband electromagnetic (EM) waves; then, the re-

flected signals from the wall and targets are processed to form

the image. For target detection and localization, the clutter

caused by the front wall EM returns must be mitigated prior to

image formation since strong wall reflections obscure station-

ary targets, especially those with small radar-cross-section.

Typically, the scene image is formed by backprojection

methods, such as delay-and-sum (DS) beamforming [1]. Re-

cently, by exploring the sparsity of signals, compressed sens-

ing (CS) has been applied for fast data acquisition and effi-
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cient signal reconstruction [4, 5]. The first attempts of em-

ploying CS for TWRI [6–10] assume that the wall returns can

be completely removed before applying CS, or a background

scene is available for suppressing the wall reflections. Very

recently, wall mitigation techniques were investigated in con-

junction with CS [11]. If the same frequency measurements

are available at each antenna, spatial filtering [12] or subspace

projection [13, 14] methods can be applied directly for wall

clutter removal. However, having the same frequency obser-

vations is not possible due to competing wireless services or

intentional interferences [15].

In general compressed TWRI, different frequency mea-

surements are collected at different antennas. Hence, the

missing frequency measurements need to be recovered before

applying either spatial filtering or subspace methods because

the phase returns vary along the antenna locations, rendering

the application of such wall mitigation techniques ineffective.

In [11], CS is applied for signal recovery at each antenna

separately. However, the images formed by this single-signal

CS model are degraded when the measurements are drasti-

cally decreased. One of the major reasons is that the signal

sparsity is reduced due to wall returns. Moreover, recovering

signal independently requires more measurements from each

antenna. Insufficient target signals in the measurement sets

lead to a weak CS constraint for signal recovery.

In this paper, we propose a new approach for enhanc-

ing wall clutter mitigation and compressed TWRI. A joint

Bayesian sparse approximation framework is first employed

for reconstructing all the signals along the antenna array si-

multaneously, by considering both signal sparsity and corre-

lations. Because of the wall returns and target reflections, the

sparsity of signals, in terms of range profiles, is reduced. To

overcome this issue, a sparsifying wavelet dictionary is in-

corporated into the model. Under the wavelet representation,

the significant wavelet coefficients across the antenna loca-

tions appear at almost the same positions ( i.e. same sparsity

support). Hence, in the proposed model, the signals are corre-

lated, and their correlations should be exploited for improving

signal reconstruction and reducing the compressive measure-

ments. Then, wall mitigation techniques, such as subspace

projection, are applied on the recovered signals for removing

the wall returns, followed by image formation.
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The remainder of the paper is organized as follows.

Section 2 reviews the through-the-wall radar signal model.

Section 3 presents the single-signal CS recovery model

for wall mitigation and compressed TWRI. Section 4 de-

scribes the proposed approach, formulating a linear model

for joint Bayesian sparse signal reconstruction in compressed

TWRI. Section 5 presents experimental results and analysis.

Section 6 gives concluding remarks.

2. THROUGH-THE-WALL RADAR SIGNAL MODEL

Consider a monostatic stepped-frequency TWRI system that

uses M antenna locations and N narrowband signals to image

a scene containing P targets placed behind a homogeneous

wall of thickness d and dielectric constant ǫ. Let zm,n de-

note the signal of frequency fn received at the m-th antenna

location. The signal zm,n can be expressed as

zm,n = σw exp(−j2πfnτm,w) +

P−1∑

p=0

σp exp(−j2πfnτm,p),

(1)

where σw and σp are, respectively, the complex reflectivities

of the wall and the p-th target, τm,w and τm,p are the round-

trip travel times of the signal from the m-th antenna location

to the wall and the p-th target, respectively.

Assume that the scene is partitioned into a rectangular

grid. Using DS beamforming [1], a complex-valued image

is formed by aggregating the measurements zm,n. The value

of the pixel at coordinates (x, y) is given by

I(x, y) =
1

MN

M−1∑

m=0

N−1∑

n=0

zm,n exp(j2π fn τm,(x,y)), (2)

where τm,(x,y) is the focusing delay between the m-th

transceiver and the target located at the pixel position (x, y).

To reveal the targets, wall reflections must be removed

from the received signals before image formation. If the full

data volume is available, wall mitigation techniques [12–14]

can be applied directly. However, for practical compressed

TWRI, we have only reduced data sets acquired along the an-

tennas. Hence, the missing frequency samples at each antenna

position need to be recovered before applying wall clutter mit-

igation techniques.

3. SINGLE-SIGNAL CS MODEL

Let zm = [z0,m, . . . , zN−1,m]T be the received signal at

the m-th antenna location. Suppose that the range pro-

file um is partitioned into N equidistant cells um,i, where

i = 0, 1, . . . , N − 1. Let τm,i be the two-way signal travel

time between the m-th antenna and the i-th range cell. The

N -dimensional range vector um is defined as

um,i =





σw, if τm,i = τm,w,

σp, if τm,i = τm,p,

0, otherwise.

(3)

Then, the signal is related to the target location as follows:

zm = Ψum, for m = 0, 1, ...,M − 1, (4)

where Ψ is an N ×N matrix, [Ψ]ni = exp(−j2π fn τi). In

compressed TWRI, the reduced frequency observations ym

collected at each antenna can be expressed as ym = Φm zm,
where Φm is a Km×N selection matrix (Km < N ) contain-

ing a single non-zero element in each row and each column.

From Eq. (4), it follows that

ym = Φm Ψum = Dm um, (5)

where Dm = Φm Ψ is a Km × N dictionary matrix. Let ε
be a noise bound. The range profile um can be recovered by

solving the following CS inverse problems:

ûm = argmin
um

||um||1 s. t. ||Dm um − ym||2 ≤ ε. (6)

In [7, 11], the signals were recovered independently, one at

a time. This recovery scheme is known as single-signal CS

technique. After recovering all the signals, a wall clutter mit-

igation technique is applied to remove the wall returns from

the target signal.

4. JOINT BAYESIAN SPARSE SIGNAL MODEL

Because of the wall returns and target reflections, the spar-

sity of the range profile um is reduced, rendering the CS ap-

plication ineffective. A sparsifying wavelet dictionary W is

therefore incorporated into the model to represent the range

vector,

um = W θm, (7)

where θm is a vector of wavelet coefficients. Substituting

Eq. (7) into Eq. (5), we obtain

ym = Dm W θm = D̃m θm, (8)

where D̃m = DmW. To account for noise in the radar signal,

the measurement vector ym is modeled as:

ym = D̃m θm + vm, (9)

where vm is a zero-mean white Gaussian noise vector.

The problem in Eq. (9) is considered as a joint spar-

sity model. That is the supports of the wavelet coefficient

vectors {θm}M−1
m=0 are assumed to have considerable overlap.

As an example, Fig. 1 shows the wavelet coefficients com-

puted using real TWRI signals (see Section 5 for the radar
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Fig. 1. Wavelet coefficients θm at all antenna locations com-

puted from the full measurements set.

system setup). It is observed that the significant wavelet coef-

ficients along the antenna locations have a common sparsity

support. Therefore, the reconstruction accuracy can be im-

proved significantly by taking into account the signal correla-

tions among the antennas.

Several joint or simultaneous sparse approximation al-

gorithms have been proposed which exploit correlations

between signals [16–18]. However, these methods are not

suitable for the TWRI problem since they assume all mea-

surement sets are obtained using the same sensing matrix,

which in TWRI context corresponds to the constraint of hav-

ing the same frequency bins at different antenna locations. To

relax this constraint, the joint Bayesian sparse signal recov-

ery framework is employed for jointly estimating the wavelet

coefficients θm [19]. This approach models the likelihood of

the vector θm as a multivariate Gaussian function,

p(ym|θm, β) = (2π/β)−Km/2 exp(−
β

2
||ym − D̃mθm||2),

(10)

where β is the noise precision. The signal sparsity is guaran-

teed via a shared prior imposed on θm,

p(θm|α, β) =

N−1∏

n=0

N (θm,n|0, β
−1, α−1

n ). (11)

Given the hyper-parameters α = {α0, α1, . . . , αN−1}, by

Bayes’ rule, the posterior density function for θm is a mul-

tivariate Student-t distribution with the following mean and

covariance [19]:

µm = Σm D̃T
m ym, (12)

Σm = (D̃T
m D̃m +A)−1, (13)

where A = diag(α0, α1, . . . , αN−1). The problem now be-

comes searching for the hyper-parameters α by maximizing

the marginal likelihood, or equivalently its logarithm,

α̂ = argmax
α

L(α), (14)

L(α) =

M−1∑

m=0

log p(ym|α). (15)

The optimization problem in Eq. (14) can be solved ef-

ficiently using a fast iterative algorithm. Note that all mea-

surement sets {ym}M−1
m=0 are used for the hyper-parameter es-

timation via the summation over the conditional distributions

in Eq. (15). Hence, the signal correlations across the antennas

are exploited through the estimation of the hyper-parameters.

The reader is referred to [19, 20] for a detailed description of

the algorithm. Once the hyper-parameters α are estimated,

the wavelet coefficients θm are obtained by the mean of the

posterior given in Eq. (12). Then, the range profiles and the

full frequency measurements are recovered using Eqs. (7) and

(4), respectively.

5. EXPERIMENTAL RESULTS AND ANALYSIS

The proposed approach is evaluated on real radar data ac-

quired with a radar system placed in front of a concrete

wall of thickness 0.143 m, and dielectric constant ǫ = 7.6.

A stepped-frequency signal between 0.7 and 3.1 GHz, with

3 MHz frequency step, was used to scan a scene containing a

0.4 m high and 0.3 m wide dihedral. A 57-element line array

with an inter-element spacing of 0.022 m was placed at a

standoff distance of 1.016 m away from the wall. The imaged

scene, extending from [0, 4] m in downrange and [−2, 2] m

in crossrange, was partitioned into an image of size 96× 96
pixels.

To solve the single-signal CS recovery problems in

Eq. (6), convex relaxation basis pursuit denoising (BPDN)

[21] and greedy orthogonal matching pursuit (OMP) [22]

were used. The noise bound ε was estimated using a cross-

validation strategy described in [23]. For sparsifying signals,

the wavelet dictionary W was constructed using Daubechies

wavelets of order 4. The normalized mean squared error

(NMSE) was used to measure the reconstruction error:

NMSE = ||z− ẑ||2/||z||2, (16)

where ẑ and z are the reconstructed and true signals, respec-

tively. The image quality was measured using the target-to-

clutter ratio (TCR) [24] (in dB):

TCR = 10 log10(Ptarget/Pclutter), (17)

where Ptarget and Pclutter are the average power of the target

and clutter regions, respectively.

In the first experiment, only 20% of the full frequency

observations were used. Figure 2 shows the signals at the

center antenna location recovered by different approaches.
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Fig. 2. Reconstructed antenna signal using single-signal CS

with BPDN (dotted line), and joint Bayesian sparse signal

model with wavelet dictionary (dashed line).
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Fig. 3. Image of a single target formed using 20% fre-

quency measurements; (a) single-signal CS with BPDN

(TCR=−0.843 dB); (b) single-signal CS with OMP

(TCR=−0.129 dB); (c) joint Bayesian sparse signal recovery

(TCR = 29.567 dB); (d) joint Bayesian sparse signal recovery

with wavelet dictionary (TCR=41.960 dB).

It is observed that compared to the single-signal CS recov-

ery, the joint Bayesian sparse approach produces a signifi-

cantly lower reconstruction error. The subspace projection

method [14] was then applied to the reconstructed signals for

wall clutter mitigation before forming the image of the scene.

Figures 3(a)-(b) show the images formed after the single-

signal CS recovery and wall removal. It is observed that the

images are degraded, containing a large amount of clutter;

the target and wall clutter regions are indicated by solid and

dashed rectangles, respectively. Figures 3(c)-(d) present the

images reconstructed with the joint Bayesian sparse model

and wall clutter mitigation. The target is well localized with

high intensity values. Figure 3(d) shows that incorporating

a sparsifying wavelet dictionary further enhances the perfor-

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

Measurements (%)

A
v
e
ra

g
e
 N

M
S

E

 

 

Single−signal CS−BPDN
Single−signal CS−OMP
Joint Bayesian without wavelet
Joint Bayesian with wavelet

(a)

10 20 30 40 50 60 70

0

20

40

60

80

100

Measurements (%)

A
v
e
ra

g
e
 T

C
R

 (
d
B

)

 

 

Original reduced signals
Single−signal CS−BPDN
Single−signal CS−OMP
Joint Bayesian without wavelet
Joint Bayesian with wavelet

(b)

Fig. 4. Performances of different imaging approaches: (a)

average NMSE of the reconstructed signals; (b) average TCR

of the reconstructed images.

mance: the wall clutter and background noise are significantly

attenuated.

We then varied the size of the compressive frequency

measurements from 10% to 70%. For each set of measure-

ments, the experiment was repeated 30 times and the average

NMSE and TCR were recorded. Figure 4 illustrates the

NMSE and TCR as a function of the number of measure-

ments. Figure 4(a) shows that compared to the single-signal

CS recovery model, the joint Bayesian sparse approach pro-

duces a considerably lower reconstruction error. This obser-

vation is consistent for all the measurements. Moreover, to

obtain the same reconstruction accuracy, the proposed ap-

proach requires far fewer measurements than does its single-

signal CS counterpart. For example, to obtain a NMSE= 0.1,

the joint Bayesian sparse approach requires only 10% mea-

surements, whereas the single-signal CS model uses 30%.

The superiority of the reconstruction by the joint Bayesian

sparse signal model is due to the fact that this approach ex-

ploits the signal sparsity as well as the interdependencies

between signals. Figure 4(b) demonstrates that incorporating

wavelet representation yields more stable image recovery and

enhances the image quality.

6. CONCLUSION

We have presented a new approach for through-the-wall radar

imaging, which incorporates wall clutter mitigation, using a

joint Bayesian compressive sensing framework. First a joint

Bayesian sparse approximation is proposed for simultaneous

signal reconstruction from the reduced set of measurements

where the sparsity and correlations between antenna signals

are exploited. A sparsifying wavelet dictionary is incorpo-

rated to promote signal sparsity and improve signal recon-

struction accuracy. Second, a subspace projection technique

is applied to the recovered signals to segregate wall clutter

from the target signal prior to image formation. Experimental

results on real data demonstrate the superiority of the pro-

posed approach over the single-signal CS model.
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