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ABSTRACT

Compressed Sensing (CS) is suitable for remote acquisition of hy-
perspectral images for earth observation, since it could exploit the
strong spatial and spectral correlations, allowing to simplify the ar-
chitecture of the onboard sensors. Solutions proposed so far tend to
decouple spatial and spectral dimensions to reduce the complexity of
the reconstruction, not taking into account that onboard sensors pro-
gressively acquire spectral rows rather than acquiring spectral chan-
nels. For this reason, we propose a novel progressive CS architecture
based on separate sensing of spectral rows and joint reconstruction
employing Total Variation. Experimental results run on raw AVIRIS
and AIRS images confirm the validity of the proposed system.

Index Terms— Compressed Sensing, Hyperspectral Imaging,
Remote Sensing, Total Variation

1. INTRODUCTION

Compressed Senging (CS) [1, 2] is a new signal acquisition paradigm,
which takes advantage from the feature of many natural signals of
being highly correlated. A high correlation entails the existence of a
domain (usually defined by an integral transform) in which the sig-
nal is sparse, and only a small fraction of the transform coefficients
are significantly different from zero. CS addresses the problem of
collecting a number of measurements smaller than that required by
Shannon theorem, but sufficient to allow the reconstruction of sparse
signals with an arbitrarily low error.

A promising application of CS theory regards the remote acqui-
sition of hyperspectral imagery for spaceborne and airborne earth
observation. On one hand, hyperspectral images exhibit a strong
correlation both in the spatial dimension and - more importantly - in
the spectral dimension, so they fit perfectly the assumptions under-
lying CS theory. On the other hand, the use of CS techniques would
allow to design sensors requiring a smaller memory buffer, fewer
detectors, and a reduced volume of data to transmit.

The application of CS theory to hyperspectral image acquisi-
tion is not straightforward mainly due to the complexity of the re-
construction stage. For a fruitful application of CS, in fact, it is
necessary that the redundancy of hyperspectral images in both the
spatial and spectral dimension is exploited, in a truly 3D fashion.
This implies that the measurement process and, more importantly,
the reconstruction process are applied to 3D blocks of the image data
cube of sufficient size, thus raising the problem of the computational
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complexity of the reconstruction step, which can quickly become un-
manageable. See for example [3], where the properties of Kronecker
products are exploited to cast a multidimensional problem to a sin-
gle dimension vector whose size is the product of the sizes of each
source dimension. Other approaches based on compressive projec-
tion principal component analysis [4] have been recently proposed in
[5] and [6], as well as a method relying on generalized tensor prod-
ucts [7]. See [8] for an overview of compressed sensing methods
applied to hyperspectral imaging.

A problem, common to virtually all proposed solutions to the
computational complexity issue (noticeably [9]), is that they work in
a 2D + 1D fashion assuming that the two spatial dimensions, here-
after indicated as x-y, are acquired and processed together, and that
the spectral dimension λ is used in a second phase to progressively
refine the reconstruction obtained from x-y data, exploiting the cor-
relation along the spectral dimension. Such an approach, however,
does not take into account the way hyperspectral images are acquired
by onboard sensors. In most cases, in fact, onboard systems are
equipped with a linear array of sensors which, at a given time, ac-
quires a spectral row (x dimension at all wavelengths). The next
spectral row is then acquired at the subsequent instant exploiting
the motion of the satellite. This acquisition architecture is usually
referred to as pushbroom configuration. As a result, the y spatial
dimension is essentially a time dimension, making it difficult to pro-
cess first the images in the x-y plane and add the spectral dimension
in a second time, since buffering the whole data cube is infeasible.
A possible solution would be to apply 2D CS reconstruction to the
x-λ plane and use the y dimension to refine the reconstruction. Un-
fortunately, previous attempts to do so failed to provide satisfactory
results [9].

In this paper we propose a solution to this problem, i.e., we con-
sider the x-λ plus y configuration and investigate suitable recon-
struction algorithms that are able to take advantage of correlations in
all image dimensions. In particular, in light of the above issues, we
propose a novel CS architecture, based on sensing over x-λ spec-
tral rows and reconstruction employing Total Variation (TV, [10])
minimization, which is better suited to reconstruct images acquired
by a satellite equipped with a sensor working in a pushbroom con-
figuration. Unlike previous approaches, which reconstruct the data
cube from a set of separately sensed spectral channels, the proposed
algorithm requires separately sensed spectral rows, which is compat-
ible with the structure of pushbroom sensors. We show that the TV
prior is effective at capturing the correlation within spectral rows,
achieving a reconstruction quality very similar to that obtained by
the simpler (but infeasible) conventional approach.

We validate the effectiveness of the proposed approach by test-
ing it on data cubes acquired by the AVIRIS hyperspectral sensor
and AIRS ultraspectral sounder. The results we obtain confirm the
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validity of our system that, thanks to the possibility of working on
larger windows, achieves the same performance in both x-y plus λ
and x-λ plus y configurations.

2. SATELLITE ONBOARD ARCHITECTURES
With the term imaging spectrometers we refer to instruments able
to measure the energy emitted or reflected from an object as a
function of two spatial and one spectral coordinate, originating 3D
datasets called datacubes. Unfortunately, only few 3D detectors
exist, which have coarse spectral resolving power and poor effi-
ciency, and are therefore unsuitable for the realization of spaceborne
sensors. Modern imaging spectrometers employ 2D detector arrays,
which collect a signal expressed in arbitrary digital units of energy
as a function of three indices representing column, row, and ex-
posure [11]. These raw data must be transformed into a standard
coordinate/measurement system of at–sensor radiance, crosstrack
position, along-track position, and wavelength (or wave number).

Imaging spectrometers used for earth observation can be cate-
gorized into classes based on two main criteria: the technique they
adopt to perform spatial sampling and the sensors architecture uti-
lized to induce spectral dispersion/discrimination. Techniques of
spatial sampling that have been used in real remote sensing instru-
ments are: whiskbroom, pushbroom, framing, and windowing. Ev-
idently, due to the 3D nature of the signal to be collected, the sam-
pling scheme adopted in the spatial domain is not independent of the
sampling scheme utilized for the remaining 1D spectral subset. A
whiskbroom scanning instrument employs a 0D spatial field of view
(FOV) that scans the object in both the along–track and the cross–
track directions. Usually, this FOV covers the entire spectral interval
to be sampled; i.e., a 1D detector array is adopted to observe all spec-
tral channels with a single shot. A pushbroom imaging spectrometer
scans a 1D FOV in the along–track direction only, covering with a
single acquisition the entire spectral range. A framing (also called
staring) instrument employs a 2D FOV that remains fixed on the ob-
ject during acquisition. The term windowing will be used to describe
the class of sensors that employ a 2D FOV that scans the target over
the along-track direction.

Three main techniques for separating spectral information pro-
duced by the observed source can be adopted in an aerospace sensor:
wavelength filtering, spectral dispersion, and multiplexing. This last
method can be applied into two distinct forms: interferential and dis-
persive multiplexing. Dispersive instruments use either a prism or a
grating to obtain dispersion of the incoming light along a space di-
rection, that is subsequently sampled by a matched detector. The
most frequent type of multiplexing spectrometers encountered in
aerospace sensors belongs to the class of Fourier–transform spec-
trometers (FTSs), i.e., two–beam interferometers such as the Michel-
son, Mach–Zehnder, and Sagnac optical configurations. Multiple-
beam interferometers (aka ètalons) such as the Fabry–Perot have sig-
nal collection abilities that are more similar to those of filtering in-
struments than of FTSs. The effects of the multiplexing architecture
on the Signal–to–Noise (SNR) of the collected signal has been dis-
cussed in depth in [12] and [13]. The most common type of imaging
spectrometer used for the realization of remote sensing sensors is the
pushbroom configuration associated with grating dispersion. Sen-
sors belonging to this class adopt a 2D detector array that samples in
a single shot a 2D domain composed by the across–track spatial co-
ordinate on one direction, and the wavelength axis on the other one.
A typical example of aerospace sensor having this architecture is the
CHRIS-PROBA from the European Space Agency [14]. Therefore,
we focus our investigation to assess and compressively sample 2D
xλ domains.

Fig. 1. Architecture of an ideal sensor utilizing the CS technology.
The sensor modulates (spatial light modulator) the 2D domain output
by the imaging spectrometer and focuses (integrates) the modulated
domain on the single–point detector
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Fig. 2. Graphical representation of a NR × NC × NB datacube. A
spectral xλ row is highlighted.

2.1. CS Sensor Architecture
The application of the CS technique to remote sensing requires a
broadband light modulator that computes random projections of the
observed image. It is important that these projections are imple-
mented optically, thus avoiding the acquisition of the entire dataset
to digitally perform the random linear combinations. Fig. 1 sketches
the conceptual scheme of a CS hyperspectral imager operating in the
pushbroom configuration. The direct modulation scheme depicted
in Fig. 1 adopts a single element detector, integrating the incoming
radiation field as modulated by the Spatial Light Modulator (SLM).
This last element is an electro–actuated 2D array of mirrors, crystals,
or liquid crystals cells that modulates the available image before the
acquisition performed by a single–element detector that integrates
the image filtered by the SLM. It must be noticed that the availabil-
ity of fast detectors and high frame-rate SLMs are critical points for
any CS applications. Moreover, it is possible to build up a sensor
with a SLM of lower frame rate, provided that a coarse resolution
2D array is utilized in the focal plane for parallelizing the CS of a
mosaic of subimages.

3. PROPOSED TECHNIQUE

We propose an acquisition and reconstruction technique based on
CS, capable of acquiring separate random projections of each spec-
tral xλ rows (hence complying with the pushbroom sensor configu-
ration described in Section 2) and reconstructing the entire data cube
capturing the correlations in both spatial and spectral directions, with
manageable complexity.

Referring to Fig. 2, the hyperspectral image F ∈ RNR×NC×NB

can be represented as a 3D collection of samples, where x and y
represent spatial dimensions and λ represents the spectral dimen-
sion. Hence, F can be considered as a collection of NR spectral
rows Fi = Fi,:,:, i = 1, . . . , NR, each consisting of a NC × NB

matrix, i.e., F = [F1,F2, . . . ,FNR ]. We refer to this configuration
as xλ− y cube.
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3.1. Acquisition
For what concerns the acquisition of the image, it consists in the col-
lection of yi ∈ RM×1 of M measurements for each spectral row
as yi = Φivec

�
Fi

�
, where each sensing matrix Φi ∈ RM×NCNB

is taken as Gaussian i.i.d. and M < NCNB. For simplicity, M is
taken as the same value for all spectral rows. The measurements
of all spectral rows are then collected in the matrix Y. This set-
ting is amenable to separate spatial reconstruction of each spectral
row. However, we expect that separate reconstruction does not yield
a sufficiently accurate estimate of the original image, since it lacks
modelling of vertical correlation. As a matter of fact, this inaccu-
rate reconstruction will be the initialization point of our proposed
reconstruction algorithm of section 3.2. The acquisition procedure
is reported in Algorithm 1.

Algorithm 1 Proposed acquisition algorithm

Require: the hyperspectral image F = [F1,F2, . . . ,FNR ], the
number of measurements per row M

Ensure: the measurement matrix Y
1: for i = 1 to NR do
2: Draw Φi ∈ RM×NCNB s.t. (Φi)kj ∼ N (0, 1/M)
3: (Y)i ← Φivec

�
Fi

�

4: end for
5: return Y

3.2. Reconstruction with Iterative Total Variation (ITV)
The idea behind the iterative reconstruction is that if we can obtain
a prediction of a spectral row Fi, e.g., applying the operator P(·, ·)
to rows Fi−1 and Fi+1 of some initial reconstruction, then we can
cancel out the contribution of this predictor from the measurements
of Fi, and reconstruct only the prediction error instead of the full
spectral row. If the prediction filter is accurate, the prediction error
is expected to be more compressible than the full signal, and the re-
construction will yield better results [9]. Prediction/reconstruction
techniques have also been considered in [15, 16, 17, 18, 19, 20] for
different applications. In particular, the iterative procedure starts
from the initial reconstruction F (0) of all spectral rows. Even if
this initial reconstruction can be obtained using several techniques,
in our experiments we reconstruct each spectral row by solving, for
each i = 1, . . . , NR, the following problem

F (0)
i,:,: = argmin

X
TV(X) s.t. Φ · vec {X} = (Y)i , where

TV(X) =
�

k,j

�
|(X)k+1,j − (X)k,j |2 + |(X)k,j+1 − (X)k,j |2 .

Since the TV is the sum of the magnitudes of the discretized gradi-
ent, seeking to minimize the TV norm relies on the assumption that
the gradient of the spectral row is approximately sparse, hence the
TV norm should be small. Then, for every row we first obtain its
prediction from upper and lower rows estimated at previous iteration
FP = P

�
F (n−1)

i−1,:,:,F
(n−1)
i+1,:,:

�
. After that, we compute prediction er-

ror measurements as ey = yi − Φivec {FP}, using the prediction
filter of [9, Section III.C.2]. We use ey to reconstruct the i-th row
summing the CS reconstruction of ey to FP

F (n)
i,:,: = FP +EF , where

EF = argmin
E

TV(E) s.t. Φ · vec {E} = ey

This process is performed on all spectral rows, and is iterated until
convergence. The proposed iterative reconstruction scheme is shown
in Algorithm 2.

Algorithm 2 ITV reconstruction algorithm

Require: the measurement matrix Y, the set of Φi

Ensure: the estimation �F
1: for i = 1 to NR do
2: F (0)

i,:,: ← argminX TV(X) s.t. Φ · vec {X} = (Y)i
3: end for
4: n ← 0
5: repeat
6: n ← n+ 1
7: for i = 1 to NBAND do
8: FP ← P

�
F (n−1)

i−1,:,:,F
(n−1)
i+1,:,:

�

9: yP ← Φi · vec {FP}
10: ey ← (Y)Ti − yP

11: EF ← argminE TV(E) s.t. Φ · vec {E} = ey

12: F (n)
i,:,: ← FP +EF

13: end for
14: until Convergence is reached
15: return F (n)

4. RESULTS
4.1. Dataset description
Our simulations are mainly based on two hyperspectral images se-
lected among those used as reference for onboard lossy compression
in the “multispectral and hyperspectral data compression” work-
ing group of the Consultative Committee for Space Data Systems
(CCSDS). These images are commonly known as granule 9 (gran9)
of AIRS and scene 0 (sc0) of AVIRIS (Yellowstone). AVIRIS is a
spectrometer with 224 bands, and the size of this image is 512 lines
and 680 pixels. AIRS is an ultraspectral sounder with 2378 spectral
channels, used to create 3D maps of air and surface temperature. In
the CCSDS dataset, only 1501 bands are considered. The unstable
channels have been removed as they have little or no scientific in-
terest. The spatial size is 90 pixels and 135 lines. These scenes are
widely used in literature so the comparisons with other techniques
are easier. Both are raw images i.e the output of the detector, without
any processing, calibration or denoising applied. Since our objective
is to assess the potential of CS to manufacture hyperspectral sensors,
employing the raw image is a more realistic approach.

4.2. Experimental results
In order to evaluate the performance of our proposed algorithm, we
present results from a set of experiments, given in terms of Mean
Square Error (MSE) as a function of the percentage of measurements
M/N , where N = NRNC for the standard xy−λ configuration and
N = NCNB for the xλ− y configuration.

For the sake of comparison with our scheme, we report Fig. 3
which is obtained by considering the standard use of the hyperspec-
tral data cube with xy as spatial dimension and λ as spectral one. To
keep the computational complexity manageable, a 32 × 32 spatial
crop of the image across all frequency bands was used. Fig. 3 shows
the reconstruction of the AIRS scene performed by Kronecker Com-
pressed Sensing (KCS) [3] and those obtained through Kronecker-
iterative compressed sampling (KICS) which relies on the iterative
procedure described in [9], with the initial point computed by KCS.
Note that both KCS and KICS perform signal recovery using the �1-
norm minimization process. As we can see, KICS provides quite
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Fig. 3. Reconstruction of AIRS scene: 32× 32 xy window.
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Fig. 4. Reconstruction of AIRS scene: 32× 32 xλ window.

good mean-squared error (MSE) values, but in the 3D reconstruc-
tion process, because of the large amount of data to deal with, KCS
faces the computational problems related to �1-norm minimization
which provides the final image reconstruction. As the complexity of
�1-norm minimization is cubic in the number of samples, increasing
the dimension of the domain yields a very high complexity at the
ground station.

In Figs. 4, 5 and 6, we show the experiments with the xλ − y
cube. The cube is acquired using the procedure of Alg. 1 and re-
constructed using ITV (Alg. 2). In this scenario, it is worth men-
tioning that KICS performed on the xλ− y cube does not converge
hence, we are constrained to make a comparison between KCS and
our ITV algorithm. In order to carry out a fair one, we focused on
a small portion of the hypercube, a 32 × 32 spectral xλ rows and
the whole vertical length (y). We repeated the experiment for 7 dif-
ferent windows along with their vertical dimension and averaged the
MSE values obtained. Results are illustrated in Fig 4. As can be
seen, the 2D xλ TV reconstruction yields very large MSE values,
which is inappropriate for practical applications. The proposed ITV
reconstruction algorithm converges in about 23 iterations and allows
to improve significantly the MSE values. ITV outperforms the KCS
for M < 35% and provides similar behavior to the KCS scheme
for higher values of M . Moreover, the ITV algorithm allows to re-
duce drastically the computational complexity up to a factor of 12
with respect to the KCS schemes as shown in Tab. 1 (complexity re-
sults refer to a Matlab–based implementation running on a Windows
operating system environment, equipped with Intel R� CoreTM2 Duo
CPU T6500 @ 2.1 GHz processor and 4 GB Ram).

As a consequence, ITV could allow to reconstruct larger spatial-
rows crops along with all their vertical dimension, a task very dif-
ficult to achieve with the KCS. Fig. 5 presents averaged results on
three different 128 × 128 xλ windows along with all their verti-

Table 1. Computational time (min.): AIRS image
32× 32 crop 128× 128 crop

M % KCS TV ITV TV ITV
10 50 4 7 25 230
30 98 8 14 43 400
50 245 12 21 63 650

10 15 20 25 30 35 40 45 50
101

102

103

104

% Measurements

M
S

E
 (d

B
)

 

 
Separate TV on spectral rows
ITV on spectral rows

Fig. 5. Reconstruction of AIRS scene: 128× 128 xλ window.

cal dimension. These results show that the bigger the xλ window
size the better the performance of ITV. On one hand, by using larger
windows, ITV allows to improve significantly the MSE values with
respect to the TV reconstruction while keeping the computational
time at a very low level. For instance, for M = 30%, the TV takes
about 40 minutes to reconstruct the entire 3D signal and a single it-
eration of the ITV reconstruction algorithm around 20 minutes. On
other hand, by using a 128 × 128 xλ window along with all its y
vertical dimension, the KCS problem becomes computationally in-
tractable and as a result the comparison with the ITV is impossible.
Experiments on the AVIRIS image are shown in Fig. 6 where the re-
sults lead to similar observations to those made on the AIRS image.

5. CONCLUSIONS
In this paper, we proposed an architecture for the acquisition and
reconstruction of hyperspectral images. The acquisition uses Com-
pressed Sensing to separately acquire spectral rows, in the same way
as actual satellite pushbroom sensors operate. The reconstruction re-
lies on the minimization of Total Variation and a progressive refine-
ment based on linear predictors to jointly process the measurements
of each spectral row, in order to exploit both spectral and spatial cor-
relation at the same time, with manageable complexity. Experiments
run on AVIRIS and AIRS images show that the proposed approach,
allowing to work with larger windows due to lower complexity with
respect to existing algorithms, achieves similar performance as sim-
pler but infeasible conventional approaches.
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Fig. 6. Reconstruction of AVIRIS scene: 128× 128 xλ window.
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