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ABSTRACT 

We address a new approach to a reconstructive imaging 
inverse problems solution as required for enhancement of 
low resolution real aperture radar/fractional SAR imagery in 
harsh sensing environments. To preserve the image and 
image gradient map sparsity peculiar for real-world remote 
sensing (RS) scenarios, we aggregate the minimum risk 
inspired descriptive experiment design regularization 
(DEDR) framework for balanced image resolution 
enhancement over noise suppression with two additional 
regularization levels: (i) the variational analysis inspired 
minimization of the image total variation (TV) map and (ii) 
the sparsity preserving regularizing projections onto convex 
solution sets (POCS). The new framework incorporates the 
TV metric structured regularization into the weighted 2

metric structured DEDR data agreement objective function 
and suggests the solver for the overall reconstructive 
imaging inverse problem employing the DEDR-TV-POCS-
restructured MVDR strategy. The DEDR-TV-POCS method 
implemented in an implicit iterative fashion outperforms the 
competing nonparametric adaptive radar imaging techniques 
both in the resolution enhancement and computational 
complexity reduction as verified in the reported simulations. 

Index Terms—Descriptive experiment design 
regularization, fractional synthetic aperture radar (F-SAR), 
image enhancement, remote sensing, total variation.

1. INTRODUCTION 

1.1. Motivation 

Conventional low resolution real aperture radar (RAR) and 
unfocused fractional synthetic aperture radar (F-SAR) 
systems with simple and cheap hardware are attractive in 
many low cost remote sensing (RS) missions with small 
airborne and/or unmanned aerial vehicle platforms [1–5].   
In modern RS computational imaging applications [6–15], 
the enhancement of low resolution RS imagery is stated and 
treated in a framework of nonparametric inverse problems 

of reconstructing the backscattered wavefield spatial 
spectrum pattern (SSP) i.e., the scene average power 
reflectivity (the second order statistics of the random 
reflectivity of the 2-D remotely sensed scene) referred to as 
its radar image [3–5]. In harsh sensing environments, the 
SSP recovery inverse problem solution is complicated due 
to the random perturbations in the signal formation operator 
(SFO) that cause multiplicative degradations with the 
statistics usually unknown to the observer [4,7,9].  
 
1.2. New challenges in relation to prior work   

The challenge of this study is to develop a new approach for 
solving the inverse problem of feature enhanced SSP 
recovery from the low resolution RAR/F-SAR imagery 
acquired in a harsh sensing environment taking different 
path from the previous studies [11–22]. The idea is to 
incorporate into the existing frameworks [16,17,20] 
additional feature enhancing, i.e., sparsity preserving (Sp-
Pr) and convergence guaranteed regularization modalities. 
Our approach is based on the descriptive experiment design 
regularization (DEDR) framework [16,17] for the balanced 
RS image resolution enhancement over noise suppression. 
Next, to preserve image and image gradient map sparsity 
peculiar for typical real-world remotely sensed scenes, we 
incorporate into such DEDR approach two additional 
regularization modalities: (i) the variational analysis (VA) 
inspired minimization of the recovered image total variation 
(TV) map and (ii) the Sp-Pr and convergence guaranteed 
regularizing projections onto convex solution sets (POCS) 
[6,8,20]. Thus, the first innovative proposition of this paper 
consists in an extension of the recently proposed dynamic 
DEDR approach [20] for the scenarios with the piecewise 
smooth sparse SSP distributions. The second innovative 
proposition relates to the construction of the aggregated 
multilevel regularization framework with the user controlled 
degrees of freedom that balances the attained spatial 
resolution over composite noise suppression and guarantees 
the image sparsity preservation. At the heart of this 
approach is the proposal to restructure the metric in the 
solution set via inducing the aggregated weighted TV2
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metric for the RS image and the image gradient maps. 
Algorithmically, this task is performed via incorporating 
into the DEDR-restructured robust minimum variance 
distortionless response (MVDR) framework [10] the 
additional TV2 and POCS regularization levels different 
from the previously proposed 2  and 1 structured DEDR-
related approaches [10–17,19–22]. We corroborate that the 
new aggregated DEDR-TV-POCS-restructured robust 
MVDR method implemented in the constructed implicit 
contractive mapping iterative computing mode outperforms 
the competing nonparametric adaptive feature-enhanced 
radar imaging techniques in the literature, e.g., the robust 
MVDR [12,17], the 2 only structured APES [19,20], the 

1  only structured DEDR [21] and the dynamic DEDR 
[20,21] that do not aggregate the POCS with the TV2

structured regularization, as we demonstrate in the reported 
numerical simulations of enhancement of a speckle 
corrupted low resolution F-SAR image.   

2. SSP RECONSTRUCTION PROBLEM  

2.1. Observation data model   
 
Following [9,11,16], consider the vector-form coherent 
equation of observation that relates the lexicographically 
ordered random scene reflectivity e observed through the 
M K perturbed matrix-form SFO SS S  and degraded 
by noise n with the RAR/SAR trajectory data signal       

                      z = Se  + n = Se + Se  + n.                  (1)    

The regular SFO term S is specified by the employed 
modulation format [4,8,9], and S  represents the zero mean 
random SFO perturbation term. In (1), e, n, z are random 
zero-mean vectors composed of the decomposition 
coefficients 1{ }K

k ke , 1{ }M
m mn  and 1{ } ,M

m mz respectively [8] 
characterized by the correlation matrices, Re = D(b) = 
diag(b), Rn = 0N I, and Rz = < eSR S > + Rn, cor-
respondingly, where < > defines the averaging over the 
randomness of the SFO, superscript + stands for Hermitian 
conjugate, and 0N  is the power  of the white observation 
noise vector n. Vector b composed of the elements, 

2
1{ | | }K

k k kb e , is a lexicographically ordered vector-form 
representation of the SSP over the pixel framed 2-D x-y
scene {kx = 1,…, Kx; ky = 1,…, Ky; k = 1,…, K = KxKy} with 
the correspondingly ordered SFO matrix in (1). In the 
considered standard (not compressed) RAR/F-SAR data 
acquisition scenarios [1–5], M K.   

2.2. Inverse problem phenomenology   
 
The nonlinear inverse problem for recovery of the SSP 
vector b from the available data recordings z, i.e., 

ˆ { | }strategyestb b z , depends on the employed estimation 
strategy. In the basic DEDR framework [16], the SSP 
estimation DEDR

ˆ { | }estb b z is performed in the positive 
convex cone solution set ( )K in the Euclidian space with 
the metric structure induced by the 2 scalar product 

2

,1/2 2 1/2
1, 1

|| || [ , ] ( ( ( , )) )k y

x y

K K
x yk k

b k kb b b        (2) 

which does not involve the image TV norm.  
The feature-enhanced SSP recovery implies the 
development of a framework (in this study, the unified 
DEDR-TV-POCS-restructured robust MVDR method) and 
the related technique(s) for high-resolution estimation 
(feature-enhanced reconstruction) of the SSP   

DEDR-TV-POCS
ˆ { | }estb b z                          (3) 

from the available recordings (1) of the complex (coherent) 
trajectory data z degraded by the composite noise 
(multiplicative S  and additive n) with the SFO 

perturbation statistics ( )SD b S usually unknown to the 
observer [4,9]. To perform the feature enhanced recovery 
(3) we suggest the VA inspired re-definition of the metric 
structure in the image/solution set ( )

ˆ,K b b  that features 
the piecewise SSP gradient map smoothness properties 
peculiar to the majority of the real-world RS scenes 
[1,4,9,18,20]. Thus, we construct the VA-inspired metric 
structure in the image/solution set via inducing the 
following weighted balanced 2 -type and TV-type norms  

2

2 1/ 2([ , ] [ , ])
K

mb b b b b TV TV|| || .m b       (4)                     

Here, the term with the weight factor m
2

specifies the 
equibalanced image b and image gradient b 2 -type 
norm specified via the (Hermitian positive definite) discrete 
Laplacian operator 2 [8]. The term with the weight factor 

TVm induces the image TV norm component computed via 
the finite differences ( xD , yD  over the x and y image axes 

1

2 2 1/2
TV ,

|| || (| ( , ) | | ( , ) | ) ||| |||
x y

x x y y x yk k
D b k k D b k kb b

treated as an 1  norm of vector bgr-m formed of the 
magnitudes of the image gradient vector entries returned by 
operator | |, i.e., bgr-m = | |b  [6]. In (4), factors m

2
and

TVm  control the balance between two metrics measures. The 
conventional 2 only structured metric (2) relates to (4) as 
its simplest version for the assignments m

2
= 1, TVm = 0 

and excluded gradient 2 norm term in (4).   
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3. UNIFIED DEDR-TV-POCS FRAMEWORK  
 
3.1. DEDR restructured MVDR 

The high-resolution adaptive estimation of the SSP via 
the classical adaptive minimum variance distortionless 
response (MVDR) method [10,19] employs the strategy 

1

1ˆ
( )k

k k

b
zs R b s

; k = 1,…, K                  (5) 

optimal (in the MVDR sense) for the theoretical model-
dependent (b-dependent) covariance matrix inverse 1 ( )zR b
where ks  defines the so-called kth steering vector composed 
of the corresponding kth row (k = 1,…, K) of the adjoint 
regular SFO matrix S+ [10,16]. In the real-world RS imaging 
scenarios, the unknown exact model of the covariance 
matrix ( )zR b  is substituted by its sample maximum 

likelihood (ML) estimate [5] ˆ
zY R ( ) ( )1

(1 / ) J
j jj

J z z

that yields the conventional MVDR algorithm [10,19] 

1

1
k̂

k k

b
s Y s

; k = 1,…, K                      (6)    

feasible for the full rank Y only. From simple algebra, it is 
easy to corroborate that the theoretical model based strategy 
(5) is algorithmically equivalent to the solution (with respect 
to the SSP vector b) of the nonlinear equation  

diag diag{ ( )} { ( ) ( ) ( )}zD b W b R b W b               (7) 

with the solution operator (SO) 

1
0( ) ( ( ) ) ( )NW b D b S S I D b S .              (8) 

Substituting in (7) the theoretical covariance matrix zR  by 

its ML sample estimate ˆ
zY R  yields the DEDR-

restructured MVDR strategy  

diag diag
ˆ ˆ ˆ ˆsolution to the Eq. { ( )} { ( ) ( )}b D b W b YW b

diag
ˆ ˆ{ ( ) ( )}K b QK b                            (9) 

with the solution independent sufficient statistics matrix 
Q S YS and the solution dependent self adjoint matrix-
form reconstructive operator  

1
0

ˆ ˆ ˆ( ) ( ( ) ) ( )NK K b D b I D b .              (10) 

In (7), (9), operator { }diag  returns the vector of the principal 

diagonal of the embraced matrix, and in (10), S S
represents the matrix-form point spread function (PSF) of 
the low-resolution matched spatial filtering (MSF) image 
formation system [1,5,8]. Note that matrix K does not 
involve inversion of ˆ( )D b , hence, the DEDR-restructured 
MVDR strategy (9) results in the desired Sp-Pr technique 
that admits zero entries in b and is feasible for rank deficient 
data matrices Y (for J < M).   
The DEDR framework [16,17] suggests the worst case 
statistical performances optimization approach to the 
problem (3) with the model uncertainties regarding the 
statistics of the SFO perturbations that yields the robust SO 
   

1ˆ ˆ ˆ ˆ( ) ( ) ( ( ) ) ( )NW b K b S D b I D b S ,    (11) 

in which 0N N is the observation noise power N0

augmented by factor  0 adjusted to the regular SFO 
Loewner ordering factor and the statistical uncertainty 
bound for the SFO perturbation (see [16] for details). Hence, 
the robust modification of the DEDR is constructed by 
replacing in (9), (10) N0 by the composite (loaded) 

0N N . In practical estimation scenarios, this 
regularization factor N  can be evaluated empirically from 
the speckle corrupted low-resolution MSF image following 
one of the local statistics techniques exemplified in [17].   
Next, we adapt the robust DEDR-restructured MVDR (9) to 
the single look mode (J = 1) substituting Y by the rank-1
zz and defining the complex MSF imaging system output 

q S z  ,                                (12) 

in which case the solver (9) is transformed into  

diag
ˆ ˆ ˆ ˆsolution to the Eq. { ( ) ( )}b b K b qq K b .    (13) 

From simple algebra, it can be next shown that for
diag{ ( )}b D b , self adjoint K (10) and rank-1 Y = zz , the 

solver (13) is algorithmically equivalent to the following 
robust modified DEDR-restructured MVDR solver  

ˆ ˆ ˆ ˆ ˆsolution to the Eq. ( ) ( ) ( )b b b A b g f b ,     (14)            

in which 
diag{ }g qq  ,                              (15) 

2ˆ ˆ( ) ( )A A b D b ,                          (16) 

ˆ ˆ( ) ( )f f b A b g ,                            (17) 

ˆ( )b ˆ ˆ( ( ) ) ( ( ) )N ND b I D b I     (18) 

where symbol defines the Schur-Hadamard (element 
wise) matrix product. 
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