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ABSTRACT

We address a new approach to a reconstructive imaging
inverse problems solution as required for enhancement of
low resolution real aperture radar/fractional SAR imagery in
harsh sensing environments. To preserve the image and
image gradient map sparsity peculiar for real-world remote
sensing (RS) scenarios, we aggregate the minimum risk
inspired descriptive experiment design regularization
(DEDR) framework for balanced image resolution
enhancement over noise suppression with two additional
regularization levels: (i) the variational analysis inspired
minimization of the image total variation (TV) map and (ii)
the sparsity preserving regularizing projections onto convex
solution sets (POCS). The new framework incorporates the
TV metric structured regularization into the weighted ¢,

metric structured DEDR data agreement objective function
and suggests the solver for the overall reconstructive
imaging inverse problem employing the DEDR-TV-POCS-
restructured MVDR strategy. The DEDR-TV-POCS method
implemented in an implicit iterative fashion outperforms the
competing nonparametric adaptive radar imaging techniques
both in the resolution enhancement and computational
complexity reduction as verified in the reported simulations.

Index  Terms—Descriptive  experiment  design
regularization, fractional synthetic aperture radar (F-SAR),
image enhancement, remote sensing, total variation.

1. INTRODUCTION

1.1. Motivation

Conventional low resolution real aperture radar (RAR) and
unfocused fractional synthetic aperture radar (F-SAR)
systems with simple and cheap hardware are attractive in
many low cost remote sensing (RS) missions with small
airborne and/or unmanned aerial vehicle platforms [1-5].

In modern RS computational imaging applications [6—15],
the enhancement of low resolution RS imagery is stated and
treated in a framework of nonparametric inverse problems
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of reconstructing the backscattered wavefield spatial
spectrum pattern (SSP) i.e., the scene average power
reflectivity (the second order statistics of the random
reflectivity of the 2-D remotely sensed scene) referred to as
its radar image [3-5]. In harsh sensing environments, the
SSP recovery inverse problem solution is complicated due
to the random perturbations in the signal formation operator
(SFO) that cause multiplicative degradations with the
statistics usually unknown to the observer [4,7,9].

1.2. New challenges in relation to prior work

The challenge of this study is to develop a new approach for
solving the inverse problem of feature enhanced SSP
recovery from the low resolution RAR/F-SAR imagery
acquired in a harsh sensing environment taking different
path from the previous studies [11-22]. The idea is to
incorporate into the existing frameworks [16,17,20]
additional feature enhancing, i.e., sparsity preserving (Sp-
Pr) and convergence guaranteed regularization modalities.
Our approach is based on the descriptive experiment design
regularization (DEDR) framework [16,17] for the balanced
RS image resolution enhancement over noise suppression.
Next, to preserve image and image gradient map sparsity
peculiar for typical real-world remotely sensed scenes, we
incorporate into such DEDR approach two additional
regularization modalities: (i) the variational analysis (VA)
inspired minimization of the recovered image total variation
(TV) map and (ii) the Sp-Pr and convergence guaranteed
regularizing projections onto convex solution sets (POCS)
[6,8,20]. Thus, the first innovative proposition of this paper
consists in an extension of the recently proposed dynamic
DEDR approach [20] for the scenarios with the piecewise
smooth sparse SSP distributions. The second innovative
proposition relates to the construction of the aggregated
multilevel regularization framework with the user controlled
degrees of freedom that balances the attained spatial
resolution over composite noise suppression and guarantees
the image sparsity preservation. At the heart of this
approach is the proposal to restructure the metric in the
solution set via inducing the aggregated weighted ¢, - TV



metric for the RS image and the image gradient maps.
Algorithmically, this task is performed via incorporating
into the DEDR-restructured robust minimum variance
distortionless response (MVDR) framework [10] the
additional ¢, —TV and POCS regularization levels different

from the previously proposed ¢, and ¢, structured DEDR-

related approaches [10-17,19-22]. We corroborate that the
new aggregated DEDR-TV-POCS-restructured robust
MVDR method implemented in the constructed implicit
contractive mapping iterative computing mode outperforms
the competing nonparametric adaptive feature-enhanced
radar imaging techniques in the literature, e.g., the robust
MVDR [12,17], the ¢, only structured APES [19,20], the

¢, only structured DEDR [21] and the dynamic DEDR
[20,21] that do not aggregate the POCS with the ¢, -TV

structured regularization, as we demonstrate in the reported
numerical simulations of enhancement of a speckle
corrupted low resolution F-SAR image.

2. SSP RECONSTRUCTION PROBLEM
2.1. Observation data model

Following [9,11,16], consider the vector-form coherent
equation of observation that relates the lexicographically
ordered random scene reflectivity e observed through the

MxK perturbed matrix-form SFO S = S+Ag and degraded
by noise n with the RAR/SAR trajectory data signal

z=Se +n=Se+ Age +n.

(M

The regular SFO term S is specified by the employed
modulation format [4,8,9], and A represents the zero mean

random SFO perturbation term. In (1), e, n, z are random
zero-mean vectors composed of the decomposition

M and {z,}", respectively [8]
characterized by the correlation matrices, R, = D(b) =
diag(b), R, =N,I, and R, = <§Re§+> + R,, cor-
respondingly, where <-> defines the averaging over the
randomness of the SFO, superscript ~ stands for Hermitian
conjugate, and N, is the power of the white observation

coefficients {e, }+_, {n,}

noise vector n. Vector b composed of the elements,
{b, =<|e, ">}~ , is a lexicographically ordered vector-form
representation of the SSP over the pixel framed 2-D x-y
scene {k,=1,...., K k,=1,..,K; k=1,..., K=KK,} with
the correspondingly ordered SFO matrix in (1). In the
considered standard (not compressed) RAR/F-SAR data
acquisition scenarios [1-5], M > K.

2.2. Inverse problem phenomenology

The nonlinear inverse problem for recovery of the SSP
vector b from the available data recordings z, i.e.,
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BZBSfS,m,egV {b|z}, depends on the employed estimation
strategy. In the basic DEDR framework [16], the SSP
estimation b =estypp b |z} is performed in the positive
convex cone solution set B, in the Euclidian space with

the metric structure induced by the ¢, scalar product

KK,

Ibll,=[bb)" =, bk k)N (@)
which does not involve the image TV norm.
The feature-enhanced SSP  recovery implies the

development of a framework (in this study, the unified
DEDR-TV-POCS-restructured robust MVDR method) and
the related technique(s) for high-resolution estimation
(feature-enhanced reconstruction) of the SSP

A

b = estyppr rvpocs (P | 2}

3

from the available recordings (1) of the complex (coherent)
trajectory data z degraded by the composite noise

A, and additive n) with the SFO
perturbation statistics < gD(b)g+ > usually unknown to the

observer [4,9]. To perform the feature enhanced recovery
(3) we suggest the VA inspired re-definition of the metric

(multiplicative ~ Ag

structure in the image/solution set B, > b,b that features

the piecewise SSP gradient map smoothness properties
peculiar to the majority of the real-world RS scenes
[1,4,9,18,20]. Thus, we construct the VA-inspired metric
structure in the image/solution set via inducing the
following weighted balanced ¢, -type and TV-type norms

[bll, =, (bbb DD iy bl ()
Here, the term with the weight factor m, specifies the

equibalanced image b and image gradient Vb /,-type
norm specified via the (Hermitian positive definite) discrete
Laplacian operator V> [8]. The term with the weight factor
my, induces the image TV norm component computed via

the finite differences ( D, , D, over the x and y image axes
Iblly=2", , ( Dbk.k,) P +| Dbk k)" =l VB,

treated as an ¢, norm of vector by, formed of the

magnitudes of the image gradient vector entries returned by
operator |Vel, i.e., by, =|Vb| [6]. In (4), factors m, and

my, control the balance between two metrics measures. The
conventional 7, only structured metric (2) relates to (4) as
its simplest version for the assignments m, = 1, m;, =0

and excluded gradient ¢, norm term in (4).



3. UNIFIED DEDR-TV-POCS FRAMEWORK

3.1. DEDR restructured MVDR

The high-resolution adaptive estimation of the SSP via
the classical adaptive minimum variance distortionless
response (MVDR) method [10,19] employs the strategy

~ 1 .
“ sIR'(b)s,

- :K (5)

seen

optimal (in the MVDR sense) for the theoretical model-
dependent (b-dependent) covariance matrix inverse R;'(b)

where s, defines the so-called kth steering vector composed

of the corresponding kth row (k = 1,..., K) of the adjoint
regular SFO matrix S* [10,16]. In the real-world RS imaging
scenarios, the unknown exact model of the covariance
matrix R, (b) is substituted by its sample maximum

likelihood (ML) estimate [5] Y = ﬁl = (l/J)Z';:]Z(j)f(j)
that yields the conventional MVDR algorithm [10,19]

1

=———k=1,.
s, Y s,

LK (6)

k

feasible for the full rank Y only. From simple algebra, it is
easy to corroborate that the theoretical model based strategy
(5) is algorithmically equivalent to the solution (with respect
to the SSP vector b) of the nonlinear equation

{D(b)} 4, = {W(b)R,(b)W(b)},, (7
with the solution operator (SO)
W(b) = (D(®)S'S+N,JI)'Db)S". ®)

Substituting in (7) the theoretical covariance matrix R, by

its:. ML sample estimate Y =R, yields the DEDR-
restructured MVDR strategy

b — solution to the Eq. — {D(b)},, = (W(B)YW (D)},
= {K(b)QK (b)},, ©)

with the solution independent sufficient statistics matrix
Q=S"YS and the solution dependent self adjoint matrix-
form reconstructive operator

K =K(b) = (D(b)¥ + N,I) ' D(b) . (10)

In (7), (9), operator {-} i, returns the vector of the principal
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diagonal of the embraced matrix, and in (10), ¥ =S'S
represents the matrix-form point spread function (PSF) of
the low-resolution matched spatial filtering (MSF) image
formation system [1,5,8]. Note that matrix K does not

involve inversion of D(l;), hence, the DEDR-restructured

MVDR strategy (9) results in the desired Sp-Pr technique
that admits zero entries in b and is feasible for rank deficient
data matrices Y (for J < M).

The DEDR framework [16,17] suggests the worst case
statistical performances optimization approach to the
problem (3) with the model uncertainties regarding the
statistics of the SFO perturbations that yields the robust SO

W(b) =K(b)S* = (D()¥ + N, )" Db)S*, (11)

in which N; =N, +B is the observation noise power N,

augmented by factor B > 0 adjusted to the regular SFO
Loewner ordering factor and the statistical uncertainty
bound for the SFO perturbation (see [16] for details). Hence,
the robust modification of the DEDR is constructed by
replacing in (9), (10) N, by the composite (loaded)
Ny, =N,+B. In practical estimation scenarios, this
regularization factor N; can be evaluated empirically from

the speckle corrupted low-resolution MSF image following
one of the local statistics techniques exemplified in [17].

Next, we adapt the robust DEDR-restructured MVDR (9) to
the single look mode (J = 1) substituting Y by the rank-1

zz" and defining the complex MSF imaging system output

+

q=S"z (12)

>

in which case the solver (9) is transformed into
b —>solution to the Eq. — b = {K(b)qq 'K (b)} .. (13)

From simple algebra, it can be next shown that for
b ={D(b)},, » self adjoint K (10) and rank-1 'Y = zz" | the

solver (13) is algorithmically equivalent to the following
robust modified DEDR-restructured MVDR solver

b —solution to the Eq. - ®(b)b = A(b)g =f(b), (14)
in which
g=14qq" },,, > (15)
A=A(b)=D’(b), (16)
f=1f(b)=A(b)g, (17)
® = ®(b) = (D(b)¥ + N,I) e (D(b)¥ + N,I) (18)

where symbol e defines the Schur-Hadamard (element
wise) matrix product.



Remark. The standard MVDR solver (6), hence its DEDR-
restructured versions (13), (14) seek for the solutions in the
positive cone set with the ¢, metric structure defined by (2).
Thus, all those are unable to perform feature enhanced SSP
recovery in the £, =TV restructured solution set B, (4).

3.2. Aggregated DEDR-TV-POCS technique

To construct the feature enhanced unified DEDR-TV-POCS
solver (3) in the solution set B, with the aggregated
metric structure (4) we incorporate into (14) the composite
cascade transform 7 =P, _MP,.. . The action of such T~
is threefold. First, the local statistics-based despeckling filter
[17] B, transforms the speckle corrupted MSF image (15)

into the despeckled low resolution image l;[o] =P,-g that

serves as an input (zero-step iteration) for the further
iterative reconstructive processing. Second, M transforms
(14) into the implicit contractive mapping iterative scheme
with three corresponding discrepancy terms related to the
¢, =TV structured (4). Last, P,, is a hard threshholding

operator that at each iteration i =1, ... clips off all entries

of l;[[] lower than the user specified nonnegative Sp-Pr

P

convergence guaranteed POCS operator [8,20]. With such
cascade T the (14) is transformed into the implicit
iterative feature enhanced DEDR-TV-POCS technique

tolerance threshold level w. Hence, serves as a

lfA’[m] = f’m + P, -® [i]f’ ]) + CZVZ[f[il -(® [f]f)[i] J

19

i
+ e[| Vi | = [ V@ b)) 1} i =11

different from other competing approaches [16-21]. Instead
of two weights m, , my, in (4), here we have incorporated

three regularization factors c;, ¢, c¢; that balance the
discrepancy terms in (19). The iterative process is initialized

with 6[01 ="P,.g and is terminated at 6[1] for which the

user specified ¢,-norm convergence tolerance level g is

attained at some i = /. In the simulations, we specified &, =
0.03 and treated different feasible assignments to cy, ¢, c3.

4. SIMULATIONS AND DISCUSSIONS

Fig. 1 reports simulations results of enhancement of an F-
SAR image applying different DEDR-related techniques.
The test 1024x1024-pixel high resolution image of Fig. 1(a)
borrowed from the real-world SAR imagery [23] relates to
the hypothetical full focused SAR imaging mode. The low
resolution speckle corrupted image of the same scene
presented in Fig. 1(b) corresponds to the single look F-SAR
mode (quick look modality (15)) for the typical operational
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scenario specifications, similar to the comparative previous
studies [17,20] as specified in the Figure captions. Figs. 1(c)
thru 1(f) report the feature-enhanced radar imaging results
obtained with different compared DEDR-related techniques
specified in the Figure captions. These results verify that the
best perceptual F-SAR image enhancement performances as
well as quantitative signal-to-noise improvement (SN/ =

10logio([lq—b |7, -||lA)—b||;22 )) measures and convergence

rates (compared to the related competing studies) are
attained with the developed DEDR-TV-POCS technique.

Fig. 1. Simulation results: (a) high resolution test scene borrowed
from [23]; (b) low resolution speckle corrupted MSF image of the
same scene formed with the simulated F-SAR; modeled system
parameters: triangular range PSF (the width at ' of the peak value,
x;, = 20 pixels); Gaussian bell azimuth PSF (the width at > of the
peak value, x; = 40 pixels); single-look scenario with the fully
developed speckle, SNR = 0 dB; (c) image enhanced applying the
¢, only DEDR-restructured APES method [19] (¢; =1, c;=c¢3=0;

convergence at / = 22, SNI = 8.44 dB); (d) image enhanced with
the TV-inspired ¢, only structured DEDR method [21] (¢;=¢,=0,

c3=1; convergence at / = 28, SNI = 5.23 dB); (e) image enhanced
using the most competing ¢, only structured dynamic DEDR-VA

technique [20] (¢; = ¢, = 1, ¢3 = 0; convergence at / = 16, SNI =
10.8 dB); (f) image enhanced with the DEDR-TV-POCS technique
(19) applying the zero-level threshold operator P, (equibalanced

case with ¢; = ¢, = ¢3=1; convergence at / = 8, SN/ = 14.06 dB).
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