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ABSTRACT
Compressive spectral imaging captures the spatial and spec-
tral information of a scene using a set of two-dimensional
random projections. Compressed sensing reconstruction
algorithms are then used to recover the underlying three-
dimensional source. This work presents a new generation of
devices that attain compressive spectral image measurements
by means of a colored-patterned detector and a dispersive
element. Simulations show that these new generation devices
can recover spectral scenes with up to 5 dB gain in PSNR
with respect to traditional Coded Aperture Snapshot Spectral
Imaging (CASSI) systems.

Index Terms— Colored patterned detectors, compressive
spectral imaging, optical filters.

1. INTRODUCTION

Traditional spectral imaging sensors acquire large amounts of
data, by scanning either the spatial or spectral coordinates to
attain the underlying data cubes. The complexity thus grows
linearly with the desired resolution. Compressive spectral
imaging (CSI) devices, on the other hand, sense spatial and
spectral information of a scene using 2-dimensional compres-
sive measurements. CSI assumes that hyperspectral images
have a sparse representation in a given basis. More specifi-
cally, a datacube F ∈ RN×N×L, or its vectorized form f ∈
RN

2L, has a S-sparse representation in a basis ΨΨΨ if it can
be represented as a linear combination of S � N2L vectors
in ΨΨΨ. An architecture that attains CSI measurements is the
Coded Aperture Snapshot Spectral Imaging (CASSI) system
[1, 2]. Figure 1(a) depicts the CASSI architecture in which,
a coded aperture pattern first encodes the information, and
a dispersive element subsequently shears the coded source
along the x-axis [3]. Compressive spectral imaging estab-
lishes that v & S log

(
N2L

)
� N2L random projections are

sufficient to recover f with high probability. CSI measure-
ments can be modeled as g = Hf , where H is the transfer
function of the optical system. This matrix accounts for the
effects of the optical elements in the device [4].
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To date, CSI devices have used traditional optical ele-
ments including focal plane array (FPA) detectors, and block-
unblock coded aperture patterns. These patterns are masks
that affect all wavelengths on each spatial location.

(a)

(b)

Fig. 1. Compressive spectral imaging architectures. (a)
Coded aperture snapshot spectral imaging (CASSI) system
and, (b) Compressive patterned snapshot imager (CPSI).

This work leverages a new generation of thin film devices
which lead to improved spectral imaging systems. In par-
ticular, a Compressive Spectral Patterned Snapshot Imager
(CSPSI) is introduced. As shown in Fig. 1(b), the system
uses a colored-patterned FPA detector combined with a dis-
persive element, to capture the spatial and spectral informa-
tion of a source in a snapshot. Unlike traditional irradiance
sensors that capture the source uniformly across a range of
wavelengths, patterned detectors are made of a tiling of opti-
cal filters with different spectral responses. Thus, each spa-
tial coordinate samples the spectral data cube along different
wavelenghts.

Colored mosaic detectors have been used in imaging de-
vices. For instance, the Bayer pattern [5] can be found in
most solid-state color cameras. Snapshot multispectral cam-
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eras based on patterned detector technology [6, 7, 8] have
been recently developed. These architectures capture the in-
formation over a few spectral bands but since each pixel is
assigned a single color, there is a trade off between spatial
and spectral resolution, which is the main drawback of these
designs. Another architecture for multispectral imaging using
color filter arrays is presented in [9]. This architecture how-
ever, requires four sensors to capture the spatial and spectral
information in a scene.

The new CPSI architecture proposed here exploits the the-
ory of compressed sensing, and thus improves the spatial and
spectral resolution in the reconstructed images. In general,
when color filter arrays are used as the principal sensing de-
vice, the resolution of the images are limited by the num-
ber of colors in the detector array. In contrast, the combina-
tion of color filter arrays and a dispersive element increases
the attainable spectral and spatial resolution. Since coded
apertures are no longer needed in CPSI, due to the embed-
ded coding in the patterned detector elements, the new im-
ager is considerably simpler. In the following sections, the
discretization model of the compressive spectral imager with
colored-patterned detectors is developed. The forward model
in matrix notation is presented. Simulations and results are
included to analyze the performance of CPSI with respect to
the traditional CASSI system. Simulations assume ideal neg-
ligible transition bands of the optical filters.

2. COMPRESSIVE SPECTRAL IMAGING WITH
COLORED PATTERNED DETECTORS

2.1. Discretization of The Mathematical Model

CPSI exploits colored-patterned detectors along with compu-
tational imaging. Figure 1(b) depicts the CPSI architecture
where the source is first dispersed by a prism and then spec-
trally filtered by the coded elements in the detector. Denote
the analog 3D spatio-spectral source density as f0 (x, y, λ),
where (x, y) index the spatial coordinates and λ indexes the
spectral components. The spectral dispersion of the source
yields

f1(x, y, λ)=

∫∫
f0(x′, y′, λ)h(x′−x, y′− y−S(λ)) dx′dy′,

(1)
where S(λ) represents the dispersion and h is the impulse
response of the system. The field f1 (x, y, λ) is then coded by
the color filter array in the FPA detector C (x, y, λ), resulting
in

f2 (x, y, λ) = f1 (x, y, λ)C (x, y, λ) . (2)

Finally, the output of the system, denoted as g (x, y), is
obtained by integrating the field f2 (x, y, λ) over the spectral
range sensitivity of the detector Λ

g (x, y) =

∫
Λ

f2 (x, y, λ) dλ. (3)

The energy captured in the (n,m)th pixel is represented by

gm,n =

∫ ∫
g (x, y) p (m,n;x, y) dxdy, (4)

where p (m,n;x, y) = rect
(
x
∆ −m,

y
∆ − n

)
corresponds to

the discretization of the (m,n)th pixel, and ∆ is the pixel
pitch. The discretization of the analog spatio-spectral source
is obtained by calculating the energy on each voxel of the
datacube fm,n,k. The discrete representation of the scene can
be obtained by

fm,n,k =

λk+1∫
λk

(n+1)∆∫
n∆

(m+1)∆∫
m∆

f0(x, y, λ)dxdydλ, (5)

wherem,n are the discrete indices for spatial coordinates and
k is the discrete index for the spectral components. The dis-
cretization in (5) provides a data cube with N × N spatial
resolution and L spectral bands. Notice that the width of each
band is determined by the dispersion function of the prism
S (λ). The discrete representation of the color filter array on
the FPA, C (x, y, λ), has the same pixel pitch as that of the
detector, such that each element of the detector matches ex-
actly one element of the filter array. C (x, y, λ) can be thus
expressed as

C (x, y, λ)=
∑
m,n,k

Cm,n,k rect
(
x

∆
−m, y

∆
− n, λ

∆
− k
)
.

(6)
Figure 2 shows a zoomed version of a source voxel after

it is sheared by the dispersive element. There, the disper-
sion function S(λ) causes the energy from a single voxel
to be mapped onto three detector pixels, such that each
source voxel can be split into three regions R0, R1 and
R2. The corresponding energy of each region impinges
in three different detector elements with energy indexed
by the weights wm,n,k,u [10], where m,n index the spa-
tial coordinates, k indexes the spectral dimension and u
accounts for the region R0, R1 or R2. More specifically,

wm,n,k,u = (fm,n,k)−1

∫ ∫
Ru

∫
dxdydλ. Notice that Fig. 2

shows the shearing operation of a voxel before it passes
through the color filter array. Using the previous discrete
representations, and assuming ideal PSF of the lens, Eq. (4)
becomes the discrete output written as

gm,n =

L−1∑
k=0

2∑
u=0

wm,n,k,u fm,(n−k−u),k Cm,n,k, (7)

resulting in a N × V measurement set with V = N +L+ 1.

The proportion of energy that passes through the color fil-
ter array, known as the transmittance, can be calculated as
Tr =

∑
m,n,k

Cm,n,k/ (NV L), where ideal optical filters with
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negligible transition bands are assumed.

Fig. 2. Zoomed version of a source voxel being dispersed and
measured. After the dispersive element, the sheared voxel
impinges onto three neighboring detector elements.

2.2. Matrix Model

Let g be the vectorized representation of the measurements
gm,n in (7). The compressive spectral imager with colored
patterned detectors can be modeled as

g = Hf , (8)

where f ∈ RN
2L is the vectorized representation of the

source in (5), and H is a NV ×N2L matrix representing the
optical system transfer function. The matrix H is determined
by the spectral response of the color filter array, and its struc-
ture is intended to represent the dispersive element operation.
More specifically, the entries of the mth row in the matrix H
are given by

(hm)n=


2∑

u=0

(wu
k)m−(u+k)N (ck)m−uN, if n−kN ′+uN=m

0, otherwise,
(9)

for m = 0, · · · , NV − 1, and n = 0, · · · , N2L − 1, with
k = bn/N2c; and N ′ = N2−N . The vectorized form of the
weight values for region u in the band k is given by wu

k , and
ck is a vector that represents the entries of the color filter ar-
ray for the kth spectral band. Thus, (wu

k)m+nN = wm,n,k,u
form,n = 0, · · · , N−1; and (ck)m+nN+kNV = Cm,n,k for
m = 0, · · · , N −1; n = 0 · · · , V −1; and k = 0, · · · , L−1.

Figure 3 depicts the matrix H forN = 6, L = 3. It can be
noticed that H is a highly structured and sparse matrix. The
entries of the color filter array are arranged in three diagonals
representing the vectors w0

k,w
1
k, and w2

k. Different color in-
tensities represent different values of weights for each region.

3. SIMULATIONS AND RESULTS

A test data cube f with spatial resolution of 256× 256 pixels
andL = 8 spectral bands in the range of 450nm to 620nm was

N 2 N 2 N 2

!"#$%!1st !"#$%! !"#$%!2nd 3rd

Fig. 3. Example of the sensing matrix H for N = 6 and
L = 3 using randomly generated colored optical filters. The
colored squares represent the weights wn,m,k,u.

used to analyze the performance of the proposed architecture.
Figure 4 shows selected spectral bands of the test data cube
and their center frequencies. Here, it is assumed that the fre-
quency responses of the filters match the spectral channels of
the test data cube. The colored patterns in the detector were
obtained by randomly tiling a set of different filters with 50%
transmittance. Simulations were performed varying the total
number of color filters. Two types of patterns were used, the
first one being combination of low pass and high pass (LHP)
filters, and the second consisting of band pass (BP) filters.
The central wavelength and bandwidth of the frequency re-
sponses were randomly generated.

486 nm 521 nm 572 nm 604 nm

Fig. 4. Selected spectral bands of the test data cube. Each
spectral slice has a spatial resolution of 256× 256 pixels.

Given the set of compressive measurements in (7) and, the
color filter array in (6), reconstructions of the data cube were
obtained using the GPSR algorithm [11]. This algorithm ob-
tains a sparse representation of the source by solving the op-
timization problem f̂ = ΨΨΨ{argminθθθ‖g −HΨθΨθΨθ‖2 + τ‖θθθ‖1},
where τ is a regularization constant, and ΨΨΨ is the sparse repre-
sentation basis that has been set as the Kronecker product be-
tween a 2D-Wavelet Symmlet 8 basis and the Discrete Cosine
Transform. The results are compared with reconstructions ob-
tained from the most recent model of the CASSI system pre-
sented in [10] using a single shot. In the CASSI system, the
entries of the coded aperture are realizations of a Bernoulli
random variable with parameter p = 0.5. Figure 5 shows
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a comparison between the reconstructions obtained with the
CPSI and the CASSI. It can be observed that the CPSI sys-
tem provides higher accuracy in the reconstructions with an
improvement of 5 dB in PSNR. In addition, Fig. 6 shows a
zoomed version of the reconstruction of the 5th spectral band
(521 nm). It can be seen that the CPSI system provides more
details in the reconstructions. Also, the spectral reconstruc-
tion for three different points in the data cube is shown in Fig.
7. It can be seen that CPSI provides more accurate approx-
imations of the spectral information of the source than the
traditional CASSI. Figure 8 shows the mean reconstruction
PSNR for the proposed architecture as a function of the num-
ber of colors in the filter array. Results show that the recon-
struction quality increases with the number of colors. LHP
and BP filters provide similar results.

Fig. 5. Reconstructions of the spectral bands in Fig. 4 us-
ing (Top row) Single shot CASSI system, (PSNR 21.2 dB),
(Middle row) colored patterned detector with 6 distinct LHP
filters, (PSNR 26.46 dB) and, (Bottom row) colored patterned
detector with 6 distinct BP filters, (PSNR 26.62 dB).

Fig. 6. Zoomed version of the reconstruction for the 5th spec-
tral band using (Left) CASSI system, and (Right) colored pat-
terned detector with 6 BP filters.

4. CONCLUSIONS

A new generation of compressive snapshot spectral imaging
devices has been introduced. The new CPSI system uses a

Fig. 7. Reconstruction along the spectral axis of the high-
lighted spatial pixel locations using CASSI, and CPSI with 6
BP and 6 LHP filters. Spectral responses for (Top-right) Point
A; (Bottom-left) Point B; (Bottom-right) Point C.
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Fig. 8. Average reconstruction PSNR as a function of the
number of colors in the patterned detector. Combinations of
low-pass and high-pass (LHP) filters and, band-pass (BP) fil-
ters were used.

color patterned filter array in conjunction with an irradiance
detector instead of the coded aperture used in CASSI. The
proposed design exhibits less hardware complexity due to the
patterned detector array. At the same time, the CPSI system
exploits the advantages of compressive spectral imaging to
capture hyperspectral scenes. The reconstruction PSNR is im-
proved by about 5 dB when compared to the CASSI system,
a better approximation of the spectral information and more
level of spatial detail are attained in the reconstructions with
the new architecture.
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