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ABSTRACT

Gaussian process (GP) regression is a nonparametric regres-

sion method that can be used to predict continuous quantities.

Here, we show that the same technique can be applied to a

class of phase imaging techniques based on measurements of

intensity at multiple propagation distances, i.e. the transport

of intensity equation (TIE). In this paper, we demonstrate how

to apply GP regression to estimate the first intensity deriva-

tive along the direction of propagation and incorporate non–

uniform propagation distance sampling. The low–frequency

artifacts that often occur in phase recovery using traditional

methods can be significantly suppressed by the proposed GP

TIE method. The method is shown to be stable with moderate

amounts of Gaussian noise. We validate the method experi-

mentally by recovering the phase of human cheek cells in a

bright field microscope and show better performance as com-

pared to other TIE reconstruction methods.

Index Terms— Phase imaging, Gaussian process

1. INTRODUCTION

Quantitative phase imaging has useful applications in biology

and surface metrology [1, 2], since objects of interest often

do not absorb light, but cause phase delays. Phase cannot be

directly measured by a camera. It needs to be reconstructed

from intensity images. Phase retrieval methods using a series

of intensity images measured through focus [3–7] are espe-

cially interesting, because they have the advantage of simple

experimental setup (Fig. 1). The setup in Fig. 1 is widely used

in microscopes. A stack of defocused intensity images can be

obtained by moving the camera.

The transport of intensity equation (TIE) [3–5] is a class

of popular methods to recover phase from defocused inten-

sity images. Besides of simplicity in experimental setup, the

TIE method is advantageous because it is less sensitive to re-

duced partial coherence in the illumination [8, 9]. Interest-

ingly, when higher–order coherence functions need to be re-

covered, phase space tomography provides an analogous pro-

Fig. 1. Experimental setup. A microscope captures intensity

images at various defocus distances in order to recover phase.

cedure [10]. The transport of intensity equation is [3]:

∂I(x, y, z)

∂z
|z=0 = −

λ

2π
∇⊥•(I(x, y)∇⊥φ(x, y)), (1)

where I(x, y) is the intensity at the focus, φ(x, y) is the phase,

λ is the spectrally-weighted mean wavelength of illumina-

tion, and ∇⊥ denotes the gradient operator in lateral direc-

tions (x, y) only. It reveals the relationship between phase

and the first derivative of intensity with respect to the optical

axis, z, at focus (z = 0). When I(x, y) is constant (i.e. a pure

phase object), the phase is solved with Laplacian inversion

Φ(u, v) = F (u, v)/(−4π2(u2 + v2)), (2)

where Φ(u, v) is the Fourier transform of φ(x, y), F (u, v)

is the Fourier transform of the first derivative
∂I(x,y,z)

∂z |z=0

scaled by 2π
λ , and u, v are the spatial frequency variables.

When I(x,y) is not constant, a similar approach involving two

Laplacian inversions must be used.

The main limitations of the TIE method are nonlinearity

in the intensity derivative estimate and noise, both of which

we address here. Intensity derivatives cannot be measured

directly and so must be estimated from finite difference meth-

ods, which subtract two images near focus. Since intensity

is not linear through focus, due to diffraction, this approach
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unavoidably has nonlinearity error error. This error can be

reduced by using a higher order TIE [5], which performs

polynomial fitting on multiple intensity images. However,

the noise in the images means that there is a danger of over-

fitting. The Savitzky-Golay differentiation filter (SGDF)

TIE [11] was proposed to solve this trade-off between the

order of fitting and noise in higher order TIE. It recovers

phase images with different orders of polynomial fitting, then

combines these phase images into a final reconstructed phase

with band–pass filters. However, the fitting becomes unstable

when the order is large [12], and the derivation of the band–

pass filters assumes that the measured intensity images are

equally spaced, which we show later to be less than ideal.

The popular scheme of measuring equally spaced inten-

sity images along the propagation direction, z, in higher TIE

and SGDF TIE is not ideal. An optimal constant step size

for two consecutive images (dz) is difficult to find. First, it

depends on the spatial spectrum of the object and the noise

statistics of the camera [13]. Second, there is a trade–off be-

tween large and small values of dz. A large dz helps to trans-

fer the low–frequency information of phase into the intensity

images. This is particularly important, because the Laplacian

inversion in Eq. (2) amplifies low–frequency error. However,

the high–frequency components favour a small dz. Here we

adopt a unequal spacing scheme for multiple defocus planes,

which takes both low and high frequency into account.

We propose a TIE phase recovery method using Gaus-

sian process regression [14] to deal with issues of nonlinear-

ity, noise and unequal spacing. Our method performs regres-

sion for each frequency component of the Fourier transform

of intensity images. Instead of performing an uninformed nu-

merical approximation such as higher order TIE, the proposed

GP TIE method incorporates the property of free–space wave

propagation in the regression.

This paper is structured as follows. In Section 2, we in-

troduce the basic theory of Gaussian process regression. In

Section 3, we apply the Gaussian process regression to TIE

phase recovery. In Section 4, we propose a unequal spacing

measurement scheme. In Section 5, we show the experimen-

tal result. We offer concluding remarks in Section 6.

2. GAUSSIAN PROCESS REGRESSION

We review the basics of Gaussian process regression. Con-

sider the problem of 2-D regression, given input/output pairs

(zn, fn), where n = 1, ..., N . Under the Gaussian process as-

sumption [14], the outputs fn are drawn from the zero-mean

Gaussian distribution with the covariance as a function of zn:

(f1, f2, ..., fN |z1, z2, ..., zN ) ∼ N (0,K(Z,Z) + σnI), (3)

where K(Z,Z) is the covariance matrix of the outputs given

the input set Z, and σn is the variance of additive Gaussian

noise in outputs. Generally, the squared exponential covari-

ance function is used to model the covariance matrix:

Kij = σ2
f exp[−

1

2ℓ2
(zi − zj)

2], (4)

where σf , ℓ, and σn in Eq. (3) are the hyper-parameters of the

GP model. We can write the joint distribution of the observed

outputs with the unknown value of f∗ at point z∗ as:
[

f

f∗

]

∼ N

(

0,

[

K(Z,Z) + σnI K(Z, z∗)
K(z∗,Z) K(z∗, z∗)

])

, (5)

where f denotes the set of observed outputs. The conditional

distribution of the unknown output f∗ at z∗ is calculated as

(f∗|f1, f2, ..., fN , z1, z2, ..., zN , z∗) ∼ N (f̄(z∗), K̄), (6)

where

f̄(z∗) = K(z∗,Z)
T (K(Z,Z) + σnI)

−1
f , (7)

K̄ = K(z∗, z∗)−K(z∗,Z)(K(Z,Z) + σnI)
−1

K(Z, z∗).
(8)

We can define a vector h(z):

h(z)T = K(z,Z)(K(Z,Z) + σnI)
−1. (9)

Thus we have f̄(z) = h(z)T f . The predicted function f̄(z)
can be understood as a weighted combination of the shifted

equivalent kernel h(z) [14, 15]. In [15], the Fourier transform

of the equivalent kernel h(z) for the squared exponential co-

variance function is given as:

h̃SE(s) =
1

1 + b exp(2π2ℓ2|s|2)
, (10)

where b = σ2
n/ρ(2πℓ

2)1/2 and ρ is the average number of

observations per unit (for example length). When b is small,

h̃SE(s) is approximated by a step function. The rapid change

from 1 to 0 happens at the point when

s2c = log(1/b)/(2π2ℓ2). (11)

Therefore, when b is small, GP regression can be viewed as a

low pass filter with 3dB cut-off frequency at sc [14, 15].

3. TIE PHASE RECOVERY USING GAUSSIAN

PROCESS REGRESSION

TIE methods need to estimate
∂I(x,y,z)

∂z |z=0 from a stack of

intensity images I(x, y, z1), I(x, y, z2), ..., I(x, y, zN ). Sup-

pose the complex field at z = 0 is written as

A(x, y, 0) = exp[iφ(x, y)− µ(x, y)], (12)

where µ(x, y) = ln I(x, y) describes absorption and φ(x, y)
is the phase. From the weak phase object approximation [16–

18], in frequency domain we have

I(u, v, z) =δ − 2U(u, v) cos[πλ(u2 + v2)z],

− 2Φ(u, v) sin[πλ(u2 + v2)z], (13)
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where δ denotes Dirac delta function, and U(u, v), Φ(u, v),
and I(u, v, z) are Fourier transform of µ(x, y), φ(x, y) and

I(x, y, z), respectively.

We perform Gaussian process regression on data points

I(um, vn, z1), I(um, vn, z2), ..., I(um, vn, zN ), for the fre-

quency component (um, vn). GP regression does not require

the measuring positions z1, z2, ..., zN to be equally spaced.

We use the low-pass filter property of GP regression by set-

ting appropriate hyper-parameters σf , σn, and ℓ. The hyper-

parameters σf and σn are initialized to keep b in Eq. (10)

small. Then we set the cut-off frequency of the GP regression

sc as πλ(u2
m+v2n) by solving ℓ from Eq. (11). The cut-off fre-

quency sc can be larger than πλ(u2
m + v2n) to allow trade-off

of accuracy and noise filtering. From Eqs. (7)(9) we have

I(um, vn, z) ≈ h(um, vn, z)
T
Imn, (14)

∂I(um, vn, z)

∂z
|z=0 ≈

∂h(um, vn, z)
T

∂z
|z=0Imn, (15)

where Imn = [I(um, vn, z1), ..., I(um, vn, zN )]T . After the

first derivative of intensity is obtained with Eq. (15), the phase

can be recovered with the Laplacian inversion in Eq. (1)(2).

4. UNEQUAL SPACING MEASUREMENT SCHEME

We propose a unequal spacing measurement scheme of the

defocused intensity images in order to transfer more phase in-

formation to intensity variation for higher SNR. It guarantees

that all frequency components of phase are transferred at least

by a ratio α to one of the intensity images. From Eq. (13), the

phase transfer function at defocus distance z is expressed as

g(z) = sin[πλ(u2 + v2)z]. (16)

The phase transfer function describes the ratio of phase trans-

ferred into intensity for each frequency component. Suppose

we start from a minimum measuring distance z1, and the aim

is to find the next z2 larger than z1. Figure 2 shows the trans-

fer functions g(z1) and g(z2) using πλ(u2 + v2) as x-axis. If

the first intersection point is at g(z1) = g(z2) = α, then we

have z2 = βz1, where β = (π − arcsin(α))/ arcsin(α). The

rate β increases when the transferring ratio α drops. Follow-

ing the same rule, we would find a series of measuring points

having zn+1 = βzn. Since zn grows exponentially according

to zn+1 = βzn, a large z can be efficiently reached, which is

crucial for transferring low–frequency phase information.

5. RESULTS

We consider three sets of data to assess the performance of

Gaussian process TIE phase recovery. Data Set 1 has 9 in-

tensity images artificially generated by moving the camera

with a constant step size of 5µm and illumination wavelength

of 632.8nm. Data set 2 consists of 9 simulated intensity

images which are captured symmetrically over the focus at

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

πλ(u2 + v2)

g

g(z1)

g(z2)

α

Fig. 2. The phase transfer functions g(z1) and g(z2) have the

first intersection point at α.

5µm, 20µm, 80µm, and 320µm. Each image in Data Set

1 and Data Set 2 has 100 × 100 pixels (size 2µm × 2µm),

corrupted by white Gaussian noise of variance 0.006. Data

Set 3 comprises 9 images (350 × 360 pixels with size of

0.62µm×0.62µm) of human cheek cells captured with a mi-

croscope. The illumination is obtained by filtering white light

with a color filter (center wavelength 650nm, 10nm band-

width). The images are captured symmetrically thorough the

focus at 5.7µm, 11.4µm, 22.8µm, and 45.6µm. Figure 3

shows the images of simulated data (Data Set 1 and Data Set

2) and experimental data (Data Set 3).

Fig. 3. The measured intensity images of simulated data (Data

Set 1 and Data Set 2) and experimental data (Data Set 3).

5.1. Simulated Data

We compare the result of higher order TIE [5], SGDF

TIE [11], and our proposed GP TIE. Figure 4(a) shows the

recovered phase using Data Set 1, which uses equally spaced

planes. For a fair comparison, we show the result of the

higher order TIE with the order of polynomial fitting m = 5,

which has best error performance among different orders of

fitting. The phase of higher order TIE still has stronger low–

frequency noise compared to SGDF TIE and GP TIE. Figure

4(b) shows the phase recovered by GP and higher order TIE

using Data Set 2, which is nonequally spaced. SGDF TIE

does not fit to the framework of unequal spacing, and so is

not shown. Higher order TIE can be extended [19] to the

case of unequal spacing. GP TIE recovers a high contrast

phase with an average mean square error (MSE) of 0.0065.

We can hardly see any milky low–frequency noise in the
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phase result of GP TIE. The phase recovered by higher or-

der TIE in Fig. 4(b) looks blurred, because it sacrifices the

high–frequency information to obtain robust low–frequency

recovery. However, GP TIE still returns a sharp phase image.

True Phase Higher Order

SGDF GP

0

0.1

0.2

0.3

20 µm

rad

(a)

Higher Order (Unequal)

GP (Unequal)

(b)

Fig. 4. (a) Recovered phase images of equally spaced Data

Set 1, using higher order TIE (MSE 0.1194 in radian), SGDF

TIE (0.0295), and the proposed GP TIE (0.0279). (b) Re-

covered phase images of nonequally spaced Data Set 2, using

higher order TIE (MSE 0.0237) and GP TIE (0.0065).

Figure 5 compares the MSE of recovered phase using dif-

ferent levels of noise. The true intensity images of Data Set

1 and Data Set 2 are corrupted by white Gaussian noise of

variance ranging for 0 to 0.2. We average the MSE over 50

trials. We compare higher order TIE, SGDF TIE and GP TIE

with equal and unequal spacing. Fig.5 shows that GP TIE

has slightly lower MSE than SGDF TIE for Data Set 1. For

Data Set 2, the MSE is relatively low for higher order TIE of

m = 5 while it is substantially larger for m = 9, highlight-

ing the importance of choosing the appropriate order, which

is difficult since it is object-dependent; on the other hand, GP

TIE clearly exhibits the lowest MSE. This can be explained by

the fact that Data Set 2 contains more information about low

frequency phase than Data Set 1. The Laplacian inversion is

sensitive to low frequency noise in the estimation of the in-

tensity derivative. GP regression using Data Set 2 yields a

more robust approximation of the intensity derivative, espe-

cially for low–frequency components in the images.

5.2. Experimental data

Figure 6 shows the recovered phase of human cheek cells us-

ing higher order TIE and GP TIE. We show the results for

higher order TIE with the order of polynomial fitting m equal

to 2, 3, and 4. The phase images of m = 2 and 3 have small

low–frequency noise but look blurred. The phase of m = 4
has high contrast in some regions, but is polluted by low–

frequency noise. However, the phase recovered by GP TIE

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.05

0.1

0.15

Noise Variance

M
SE

/ra
di

an

Higher Order TIE m=5 SGDF TIE GP TIE 

Higher Order TIE m=5 Higher Order TIE m=9 GP TIEData Set 2:

Data Set 1:

Fig. 5. Comparison of MSE for phase recovery with image

stacks polluted by different amounts of white Gaussian noise.

GP TIE of nonequally spaced data shows a stable error plot.

Higher Order m=2 Higher Order m=3

Higher Order m=4 GP

−0.5

0

0.5

1

rad

20 µm

Fig. 6. Phase images of human cheek cells recovered by

higher order TIE (m = 2, 3, and 4) and GP TIE.

has less low–frequency noise and high contrast. We can see

detail of cells in the phase image recovered by GP TIE.

6. CONCLUSIONS

In this paper, we propose a TIE phase recovery method us-

ing Gaussian process regression. By incorporating the prior

knowledge of wave propagation into the regression, our pro-

posed method recovers phase from intensity images measured

in unequally spaced defocus planes. It is robust and stable

with different levels of white Gaussian noise. With the free-

dom of measurement positions, TIE methods can extend to

developing new measurement strategies if any prior knowl-

edge of the phase spectrum is known.
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