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Abstract—In this paper, we propose to model the energy consumption
of smart grid households with energy storage systems (ESS) as an
intertemporal trading economy. Intertemporal trade refers to transaction
of goods across time when an agent, at any time, is faced with the option
of consuming and/or saving with the aim of using the savings in the future
and/or spending the savings from the past. Smart homes define optimal
consumption as balancing/leveling their consumption profile such that the
utility company is presented with a more uniform demand. Due to the
varying nature of energy requirements of household and market energy
prices over different time periods in a day, households face a trade-off
between consuming to meet their current energy requirements and/or
storing energy for future consumption and/or spending energy stored in
the past. These trade-offs or consumption preferences of the household are
modeled as a Cobb-Douglas utility function using consumer theory. This
utility function is maximized subject to budget and storage constraints
to solve for the optimal consumption profile. We graphically illustrate
the process of computing the optimal consumption point when a day is
divided into two or three time periods. For higher dimensional multi-
period models, we formulate the optimization problem as a geometric
program (GP). Simulation results show that the proposed approach is
able to achieve a uniform consumption profile with extremely low peak
to average ratio (PAR) close to 1 in addition to reducing consumption
costs for the household by about 6%.
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I. INTRODUCTION

Energy storage systems (ESS) has recently gained attention due
to the integration of fluctuating and intermittent renewable energy
sources and plug-in hybrid electric vehicles (PHEVSs) into smart grid
systems [1]. Demand side management (DSM) commonly refers to
programs that control the energy consumption of households. DSM
programs such as residential load management aim at reducing,
shifting and/or scheduling consumption at the household level to
off-peak hours by means of smart pricing options such as critical
peak pricing (CPP) [2], time-of-use pricing (ToUP) [3], etc. Smart
pricing combined with fluctuating renewable energy production makes
energy consumption schedulers (ECS) and ESS indispensable in
smart homes. Though scheduling itself is successful to a certain
extent in reducing the peak to average ratio (PAR) of consumption
and yielding some cost savings, there is a limit to the amount of
household energy requirements that can be scheduled without causing
excessive discomfort. Even though scheduling is implicitly supported
by the utility company through smart pricing, scheduling alone cannot
guarantee consumption PAR minimization for the utility company.
ESS provide smart homes with an attractive option to balance/level
their consumption such that their consumption costs are reduced and
the utility company is presented with a more uniform demand.

Residential energy storage is enabled by dedicated battery sys-
tems, supercapacitors, PHEVs, etc. [4]. Vehicle to home (V2H) and
vehicle to grid (V2G) technologies [5] have already enabled bidirec-
tional transfer of energy between the grid or home and the battery
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system in PHEVs with the aim of selling demand response services
back to the grid or home. Though energy storage using batteries
has been traditionally considered lossy, difficult and expensive, it is
expected to be a key component of smart homes in future smart
grid systems. Affordable home battery back-up systems with storage
capacities around 3-6 KWh are available at the retail level due
to wide spread adoption of renewable energy production sources.
Moreover, households with battery systems have the advantage of
generating additional income by selling surplus stored energy during
peak periods to neighbors without storage facilities [6]. Along with
pricing incentives, scheduling capabilities, renewable energy source
integration, consumption balancing/leveling and cost minimization
options, home battery systems are not only cost-effective for the
households in the long run, but also increase the social welfare for
the entire energy generation and distribution system.

Saving goods or money for future use is an inherent characteristic
of Homo economicus. In macroeconomic theory, intertemporal trade
is defined as the transaction of goods or money across time when
an agent is faced with the option of consuming and/or saving in the
present with the aim of using the savings in the future [7]. Optimal
energy consumption for a household could be defined as minimizing
consumption costs which would involve storing energy during oft-
peak hours when prices are lower and using it during peak hours
when prices are higher. However, in this scheme, the household is
the sole beneficiary and there is no direct incentive for the utility
company to support this scheme as the resulting consumption profile,
if not worse, is as non-uniform as the actual energy requirements of
the household. Therefore, we define the optimal consumption of the
household as a balanced consumption profile that is as uniform as
possible in addition to reduction in consumption costs as well. Thus,
there is an incentive for both the household and the utility company
to support the consumption balancing/leveling scheme (reduction in
consumption costs for the former and uniform demand response or
balanced overall load for the latter).

Using micro/macro economic concepts to study and model the
dynamics of smart grid systems is a fairly recent approach. A market
clearing auctioning approach for buying and selling demand response
as a public good has been studied in [8]. Deployment of optimal and
autonomous incentive based ECS algorithm for smart grids without
energy storage devices is discussed in [9]. A non-cooperative game-
theoretic approach to modeling DSM with energy storage devices
for a whole locality is discussed in [10], which studies the effect of
multiple households with battery systems in the same neighborhood
simultaneously opting for cost minimization scheme that could lead to
extremely non-uniform demand resulting in grid failure and suggests
a game-theoretic and machine learning based approach to arrive at a
Nash equilibrium consumption point.



The contributions of this paper are as follows. We model the en-
ergy consumption of smart homes with ESS as an intertemporal trad-
ing economy. Optimal consumption is defined as balancing/leveling
the household consumption such that the utility company is presented
with a demand that is a as uniform as possible. The trade-off between
consuming energy to meet current energy requirements versus storing
energy for future consumption is represented by a Cobb-Douglas
utility function using consumer theory. The process of computing the
optimal consumption point when a day is divided into two or three
time periods is graphically illustrated. For higher dimensional models,
the optimization problem is formulated as a geometric program and
solved subject to budget and storage constraints. For a given set of
hourly day-ahead market energy prices, daily energy requirements and
operational parameters of a battery system, the proposed model is able
to achieve extremely low consumption PAR close to 1 in addition to
reducing consumption costs by about 6%.

The rest of this paper is organized as follows. The system model
is briefly described in Section II. An introduction to intertemporal
trade and consumer theory is given in Section III and the optimization
problem is formulated as geometric program. In Section IV, examples
are given for graphically solving the optimal consumption profiles of
two- and three-period models and the optimization problem for a 24-
period model is solved. Section V concludes the paper.

II. SYSTEM MODEL

Consider a smart grid system where households are served by
multiple utility companies that exogenously provide energy. Addi-
tionally, households may also generate energy by means of privately-
owned renewable sources. Households are equipped with ESS and
a smart meter with ECS capabilities. Each household has access to
day-ahead hourly prediction prices issued by their utility companies
so that they can schedule their appliances accordingly and choose an
optimum strategy for charging and discharging their batteries. Each
household also has accurate knowledge of its energy requirements
during every time period of the day. We make a simplistic assumption
that there are no externalities in the market, i.e., each household
cares only about the amount of energy that it consumes and is not
concerned with the consumption of other households even though it
may indirectly affect the market. Finally, we assume that households
are price takers, so that they take the prices in the market as fixed
and act accordingly, and have no power (or at least believe that they
have no power) to change the market prices.

We define a N-period model for the household as a 24 hour
day that is equally split into N intervals and each period is indexed
by {1,2,---, N}. Household defined time periods are synchronized
with the periods set by the utility company for their dynamic pricing
model. The price, energy requirement, consumption and state of
battery storage (charge levels at the end of a period) in periods 1
through N are denoted by p1, 1, c1, b1 through pn,In, cn, bn. Let
bo denote the initial state or charge level of the battery before the
beginning of the first period, by the final state of the battery at the
end of N periods and b,y,q, its maximum charge levels or its capacity.
Without any prior knowledge about the state of the battery before
period 1 and after period IV, we can set both by and by to zero.
However, any arbitrary value for by and by can be set in this model
without loss of generality. Let r be the rate of storage loss per period
in the battery that accounts for unavoidable self-discharge and other
loss factors, meaning £ Wh of energy stored in one period is worth
E(1 —r) Wh of energy in the next period and E(1 —r)? after two
periods, i.e., (1—r) is the per period storage efficiency of the battery.
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III. INTERTEMPORAL TRADE

In order to describe the proposed approach, let us assume that
households face only two time periods in a day, where period 1
occurs during the off-peak hours when prices are low and period
2 occurs during peak hours when prices are high, and that the energy
requirements and prices within these periods are constant. More
variations in energy requirements and prices can be accommodated
into the model by expanding the number of time periods in a day
such that the energy requirements and prices are constant within
those periods. In period 1, the household consumes an amount equal
to its energy requirements in that period with the option of using
any stored energy from the previous period and since the prices are
lower than in next period, the household also chooses to store energy
by charging its batteries. Thus consumption in period 1 is given by,
c1 =11+ b1 —bo(1—7r) =11+ bi. In period 2, the household can
use stored energy from period 1 to partially or fully meet its energy
requirements by discharging the batteries and hence consumption is
given by, co = la + ba — b1(1 —r) = I — b1 (1 — r). Rearranging,
we arrive at the household budget constraint as shown in Eq. (1).
Cl+ﬁ:l1+ﬁ~ 1
The budget constraint of the household gives the present value (i.e.,
w.r.t period 1) of total consumption in terms of its present value
of total energy requirement. This is illustrated graphically in Fig. 1.
Let (c1,c2) € R? be the consumption space. The budget constraint

Consumption Space, Budget Constraint and Load Profile
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Fig. 1. Consumption space, budget constraint and energy requirement profile
of a household. The black line gives the budget constraint and its intercepts
represent extreme points of consumption in different periods. Point L is the
energy requirement profile of the household when there is no storage and
consumption is same as the energy requirement. Points C and D represent the
levels to which the batteries are charged or discharged in different periods.

is a line in the consumption space whose intercepts are determined
by the energy requirement profile of the household. The horizontal
intercept [1 +12/(1+r) gives the amount that would be consumed in
period 1 if there would be no consumption in period 2. The vertical
intercept la 4+ I1(1 4 r) gives the amount that would be consumed
in period 2 if there was no consumption in period 1. The slope of
the budget line is given by —(1 — r), or the negative of storage
efficiency. The household can operate at any point or consumption
profile (c1, c2) that is on the line (efficient) or in the region below
(inefficient), but not above (unattainable). The point L on the budget
line is the household energy requirement profile ({1, /2) and at this
point, consumption is equal to energy requirement and the batteries
are idle and not used. If period 1 occurs during the off-peak hours



when market prices are low, the household operates at point C' on
the budget line, where, in addition to the energy requirement /;, the
consumption is /1 + by and the batteries are charged to b; to be used
in period 2 when the market prices are higher. Similarly, during peak
hours when the market prices are high, the household operates at point
D where the batteries are consumed to reduce the consumption and
costs. Extending recursively to a N-period model, we can derive the
general budget constraint which is a hyperplane in an /V-dimensional
space as shown in Eq. (2).
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The problem faced by households can now be stated as follows:
Given N periods in a day {1,2,---, N}, market prices p =
[p1, D2, ,pn]7T, energy requirements 1 = [I1,la,- - -, In]7, battery
capacity b,,q. and battery loss rate r per period, at which point on the
budget hyperplane should the household operate, i.e., how to choose
an optimal consumption profile ¢* = [c},c5, -+, ci]”, or in other
words, when should the household charge or discharge its batteries
and by how much ? The answer is given by consumer theory.

A. Consumer Theory

Preferences are used to model the way rational households make
choices about their consumption. Preference relations are defined
in the consumption space. Formulating appropriate utility functions
that reflect the consumption preferences of users over different time
periods is of vital importance in modeling intertemporal trade. Utility
functions u(c1, c2) with respect to consumption in time periods 1
and 2 for a two-period model are usually visualized as isoquants
or contours in the two dimensional consumption space with each
consumption period on each of the axes and contour lines linking
points of equal utility. The constant utility contour lines are known
as indifference curves as they link points of equal preference, in other
words, linking consumption points that are indifferent. Some common
utility functions as shown in Fig. 2 are,

u(cr, e2) = c1 + ca, (Perfect Substitutes)
(Perfect Complements)

u(er, c2) = 1™t * c2®2. (Cobb-Douglas Utility)

u(er, e2) = min(er, c2),

If a household does not care about consumption in individual

Perfect Substitutes Perfect Complements Cobb-Douglas Utility

Consumption in Period 2
Consumption in Period 2
Consumption in Period 2

Consumption in Period 1 Consumption in Period 1 Consumption in Period 1

Fig. 2. Examples of common utility functions such as perfect substitutes,
perfect complements and Cobb-Douglas utility function with a1, a2 = 0.5.

periods, but is concerned only about the total consumption, the
perfect substitute utility function captures this preference aptly as
consumption in period 1 can be substituted for consumption in
period 2. If the utility company employs a static pricing model, then
households will tend to use this kind of utility function to optimize
their consumption. If a household values consumption in period 1
with a certain minimum constraint on consumption in period 2, this
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preference is reflected in the perfect complement utility function. If
the household has renewable energy sources with a fixed amount
of energy production, then the perfect complement utility function
would be ideal for modeling this scenario. However, if a household
values a certain share of consumption in period 1 (o) in relation to
consumption in period 2 (a2), the Cobb-Douglas utility function is
best suited for modeling this preference. This kind of utility function
is applicable to households that try to balance/level their consumption
to help the utility company by supplying a uniform demand. Since
these utility functions capture the best possible trade-off between
consuming and storing energy under different scenarios while taking
into account the current and future energy requirement and market
prices, the optimal consumption point of a household is achieved
when its utility function is maximized subject to its budget constraint.

B. Optimal Consumption

The household aims to achieve optimal consumption by balanc-
ing/leveling its consumption such that the utility company is presented
with a more uniform demand. The Cobb-Douglas utility function is
apt for representing how households value a certain share of con-
sumption in every period depending upon the energy requirements and
market prices in order to even out overall consumption. The parameter
«; in the Cobb-Douglas utility function for period ¢ is chosen such
that it represents the normalized cost of consumption in all time
periods excluding ¢ and by constraining a; + a2 + -+ + an = 1,
the peaks in consumption are flattened. For example, in a two period
model, o] = p2l2/(p1l1 =+ pglg) and oo = plll/(plll =+ pglg). In
addition to the budget constraint, we can also add a savings constraint
that restricts the optimal consumption profile such that the household
incurs no additional cost for balancing/leveling the consumption. The
optimization problem can be formally stated as follows :

N
Max u(c1, c2, ..., eN) = l_Ic?i7 where
i=1

N
o = 2 =1, Pili and XN:% _1
(N -1) vazl pili i=1
T Ci T li T T
S.t ;Wig;W’ P CSp L.
This class of optimization problems are referred to as a geometric
programs (GPs) [11], where the objective function is a posyno-
mial and the constraints are posynomial equalities and/or monomial
inequalities. An optimal solution always exists for a GP, and the
trick to solving it efficiently is to convert it to a non-linear but
convex optimization problem by logarithmic change of variables.
Computationally advanced methods such as primal-dual interior point
algorithms can solve large-scale GPs extremely efciently and reliably.

IV. EXAMPLES

Let us assume the utility company charges households with
energy prices based on the USA New England hourly real-time prices
of January 1st, 2011 [12]. We model the daily energy requirement of
households with usage-statistics-based load model proposed in [13].
This model simulates daily load with one hour time resolution through
simulation of appliance use and also by taking into account simulated
resident activity in households. The day-ahead hourly market energy
prices and hourly energy requirements of household are shown in Fig.
5(a) and (b) respectively.



A. Two-period and Three-period Models

We divide the USA NE hourly prices into two time periods with
period 1 running from midnight until noon and period 2 from noon
until midnight and set market prices by averaging the prices over
those time periods. Other time period divisions are also possible
depending upon the utility company’s definition of peak and off-
peak hours without loss of generality. The simulated hourly energy
requirement of the household is aggregated over the time periods.
Similarly, for the three-period model, prices are averaged and energy
requirements are aggregated over 3 periods of 8 hours each. The
market energy prices and energy requirements of the household for
two- and three-period models are shown in Fig. 3. Given this set

Market prices and energy requirements for a two—period model
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Fig. 3. Market energy prices and daily energy requirements of a household
for two-period and three-period models respectively.

of market prices, energy requirement profile and storage loss rate
r = 0.01, the optimization problem can be solved for two- and
three-period models by maximizing the Cobb-Douglas utility function
subject to the budget constraint. Graphically, the optimal point of
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Fig. 4. Graphical representation of optimal consumption point for two-period
and three-period models. The optimal point occurs when the budget hyperplane
is tangential to the indifference surfaces of the utility function.

consumption occurs where the budget hyperplane is tangential to the
indifference surfaces of the utility function as depicted in Fig. 4.

B. 24-period Model

We extend the two-period to a generic multi-period model. Given
the day-ahead hourly market energy prices and hourly household
energy requirements, we solve for the 24-dimensional optimization
problem with battery loss rate of » = 0.001 and battery capacity of
bmaz = 5 KWh. The results are presented in Fig. 5. We see that
the optimal consumption (c) of the household is very uniform over
time with PAR = 1.0390, even though the energy requirement profile
(b) is highly non-uniform. The battery profile (d) shows the levels to
which the batteries are charged or discharged during each time period
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Optimal Consumption Profile for N = 24, r = 0.001 and bmax =5KWh
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Fig. 5. Optimal consumption for a 24-period model with battery loss rate r =
0.001 and battery capacity bymae = 5 KWh. The day-ahead hourly market
energy prices (a) and hourly energy requirements (b) are shown in black. The
optimal consumption profile (c), battery charging/discharging profile (d) and
battery charge levels at the end of each period (e) are shown in blue. The
consumption profile resulting from cost minimization (f) is shown in red. We
see that the optimal consumption profile (c) is very uniform (PAR = 1.0390)
over all time periods with about 6% reduction in consumption costs.

and the battery state (¢) shows the charge levels of the battery at the
end of each time period. In order to achieve the optimal consumption
profile, we see that the batteries are used continuously during all
time periods to flatten the peaks in the energy requirements of the
household. A reduction of about 6% in consumption costs is achieved.
In comparison, under the cost minimization scheme, a reduction
of about 12% in consumptions costs is achieved. However, this is
achieved at the cost of a highly non-uniform consumption profile
(f). Thus, for a given set of hourly day-ahead market energy prices,
daily household energy requirements, battery capacity and loss rate,
the optimal consumption profile is achieved by balancing/leveling the
consumption of the household. In this scheme, both the household
and the utility company benefit as the household enjoys reduction
in consumption costs while the utility company is presented with
demand that is as uniform as possible.

V. CONCLUSIONS

A framework for modeling the energy consumption of smart
households with storage devices as an intertemporal trading economy
is proposed. The model is also applicable for households with
renewable energy production sources and energy storage systems
such as dedicated batteries or PHEVs. Households define optimal
consumption as as balancing/leveling their consumption profile such
that the utility company is presented with a demand that is as uniform
as possible. Due to the dynamic nature of market energy prices and
demand, the household is faced with a choice between consuming in
the present to fulfill its current energy requirements, storing energy for
future use and spending energy stored in the past. The consumption
preferences of the household are modeled as Cobb-Douglas utility
function using consumer theory. The process of computing the
optimal consumption point when a day is divided into two or three
time periods is graphically illustrated. For higher dimensional models,
the optimization problem is formulated as a geometric program and
solved subject to budget and storage constraints. Simulation results
show that the proposed model achieves an optimal consumption
profile with extremely low consumption PAR values close to 1 in
addition to reducing the household consumption costs by about 6%.
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