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ABSTRACT

This paper investigates the real-time energy management in power
system with distributed microgrids, which are independently oper-
ated and each is modeled to comprise of a renewable generation sys-
tem, an energy storage system and an aggregated load. We jointly
optimize the energy charged/discharged to/from the storage system
and that drawn from the main grid over a finite horizon to minimize
the total energy cost of conventional generation subject to given load
and storage constraints. We assume that the renewable energy off-
set by the load over time, named net energy profile, is predictable
but with finite errors. First, we consider the “off-line” optimiza-
tion under an idealized assumption that the net energy profile is
known ahead of time, and derive its optimal closed-form solution.
Next, by applying the off-line solution combined with a sliding-
window based sequential optimization, we propose a new “online”
algorithm for real-time energy management under the practical setup
with noisy predicted net energy profile subject to arbitrary errors. Fi-
nally, through simulations, we compare the performance of our pro-
posed online algorithm against the conventional dynamic program-
ming based solution as well as a heuristically designed myopic algo-
rithm under a practical setup.

1. INTRODUCTION
Over the last few years, the worldwide extensively increasing elec-
tric energy consumption has become a serious concern. To reduce
both the operational and environmental costs of conventional fos-
sil fuel based energy generation, energy harvesting from renewable
sources such as solar and wind over geographically distributed lo-
cations has emerged as a promising solution. Thus, the concept of
microgrids becomes appealing for next generation power systems,
where each microgrid consists of a networked group of renewable
energy generators and storage systems to provide cheaper and green
energy to users in a small geographical area [1].

However, the efficient and reliable operation of microgrid sys-
tem faces new challenges due to the intermittent characteristics of
renewable energy sources. To overcome this problem, various ap-
proaches such as using conventional generation as the supplement
and enabling microgrids’ energy cooperation [2, 3] have been pro-
posed. Moreover, energy storage is a practically adopted solution
as well since it helps smooth out the power fluctuations in the re-
newable energy supply and thus improves the grid’s efficiency and
reliability.

In this paper, we investigate the problem of real-time energy
management for distributed microgrids, which are assumed to be
independently operated and each is modeled to comprise of a re-
newable generation system, an energy storage system, and an ag-
gregated load. We jointly optimize the energy charged/discharged
to/from the storage system and that drawn from the main grid over a
finite horizon to minimize the total energy cost (modeled as the sum

of time-varying strictly convex functions) of conventional genera-
tion, subject to given load and storage constraints. We assume that
the renewable energy generated in each microgrid offset by its load
over time, named net energy profile, is practically predictable but
with finite errors that are arbitrarily distributed. Under this setup, we
propose a new off-line optimization approach to devise the online
energy management algorithm. First, we consider the off-line opti-
mization by assuming that the net energy profile is perfectly known
a priori, and obtain its optimal closed-form solution. Next, we con-
sider the practical setup with noisy predicted net energy profile sub-
ject to arbitrary errors, and develop a new online algorithm by com-
bining the off-line solution with a sliding-window based sequential
optimization. Finally, we conduct simulations to compare the per-
formance of our proposed online algorithm with the conventional
dynamic programming based solution and a heuristically designed
myopic algorithm, for a specific setup where the prediction errors of
the net energy profile follow a given stationary distribution.

It is worth noting that there have been a handful of prior stud-
ies [4–12] on energy management for microgrid systems. [4–7] stud-
ied the off-line energy scheduling problem under the assumption
that the demand and renewable generation are either deterministic
or known ahead of time. [8–11] investigated the online energy man-
agement problem under the stochastic demand and/or renewable en-
ergy by assuming either a simplified storage model [8, 9] or that the
net energy profile follows a stationary stochastic process with known
distributions [10,11], which may not be valid for practical renewable
sources. Furthermore, [12] proposed an optimal online energy stor-
age management policy under the assumption of a simplified time-
invariant linear energy cost function of conventional generation.

2. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a power system consisting of the main grid and a set of
distributed microgrids, which all connect to the main grid but oper-
ate independently to supply power to their respectively covered ge-
ographical areas. We assume that there is no cooperation among the
microgrids and thus focus our study on one single microgrid in this
paper. We will address the general case with microgrids’ coopera-
tion in our future work. The system model of our interest is depicted
in Fig. 1, where a microgrid is shown to connect to the main grid
and comprise of three basic elements, i.e., a renewable generation
system, an energy storage system, and an aggregated load.

We assume a time-slotted system with slot index i, 1 ≤ i ≤ N ,
where N denotes the total number of slots for energy scheduling. We
further assume a quasi-static time-varying model for the renewable
energy, in which the energy rate is constant within each slot, but may
change from one slot to another. We also assume that the duration
of each slot is normalized to a unit time unless specified otherwise;
thus, we can use power and energy interchangeably. Next, we define
each element of the microgrid system in more detail as follows.
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Fig. 1: System model.

Energy storage model: We denote the energy charged (dis-
charged) to (from) the storage in slot i as Ci ≥ 0 (Di ≥ 0).
The charging and discharging efficiency parameters are denoted by
0 < αc < 1 and 0 < αd < 1, respectively. By denoting the state
(stored energy) of the storage system at the beginning of each time
slot i as Si ≥ 0, we have

Si+1 = Si + αcCi −Di/αd, i = 1, · · · , N. (1)

Note that S1 is the initial energy storage at the beginning of slot
1, while SN+1 is the final energy storage at the end of the N -slot
scheduling period. Furthermore, practical energy storage systems
should have a finite storage capacity Smax ≥ 0 and a minimum
storage level Smin ≥ 0, i.e.,

Smin ≤ Si ≤ Smax, i = 2, · · · , N + 1, (2)

where Smin ≤ S1 ≤ Smax is assumed by default. In addition, the
final energy storage SN+1 needs to be kept above a given threshold
S with Smin ≤ S ≤ Smax, in order to ensure a cost-effective energy
scheduling for the next N -slot horizon. Thus, we have:

SN+1 ≥ S. (3)

Load and renewable energy model: In each slot i, the demand
and the generated renewable energy are denoted as DEi ≥ 0 and
REi ≥ 0, respectively. We define the net energy profile over time
as Δi = REi −DEi, i = 1, · · · , N , which specifies the mismatch
between the renewable energy supply and the demand. Note that
Δi can be zero, positive (representing a supply energy surplus) or
negative (representing a supply energy deficit). We assume that both
REi’s and DEi’s are predictable in practice but with finite errors,
due to their randomness over time. Hence, we model the net energy
profile as

Δi = Δi + δi, i = 1, · · · , N, (4)

where Δi and δi denote the predictable component in the net energy
profile and its corresponding prediction error in slot i, respectively.
Under this model, we assume that at each slot i ∈ {1, . . . , N}, the
exact net energy profile over time k ≤ i, i.e., Δ1, · · · ,Δi, and the
predictable net energy profile for time k > i, i.e., Δi+1, · · · ,ΔN ,
are perfectly known to the microgrid, whereas the prediction errors
for time k > i, i.e., δi+1, · · · , δN , are unknown.

We further assume that the microgrid should always meet the
load demand by discharging from its storage and/or drawing energy
from the main grid. Let the energy drawn from the main grid in slot
i be denoted by Gi ≥ 0. We then have the energy neutralization
constraints over time as Gi +Δi +Di ≥ Ci, i = 1, · · · , N .

Conventional generation cost: We consider a general time-
varying energy cost model for conventional generation. We model
the costs over time by a sequence of functions of Gi, denoted by
fi(Gi), i = 1, · · · , N , each of which is assumed to be known to the
microgrid and has the following properties:

• fi(Gi) is a strictly convex function over Gi ≥ 0;

• fi(Gi) is a strictly positive and monotonically increasing
function over Gi ≥ 0;

• fi(Gi) is continuous and differentiable over Gi ≥ 0, where

Fi(Gi) � f ′
i(Gi) denotes the differential of fi(Gi) and

F−1
i (·) denotes the inverse function of Fi(·).

One commonly adopted function of fi(Gi) satisfying all the above
properties is [13]

fi(Gi) = aiG
2
i + biGi + ci, (5)

where ai > 0, bi ≥ 0, and ci ≥ 0 are given cost coefficients for slot
i.

With the aforementioned models, we proceed to optimize the
decision variables {Ci, Di, Gi}Ni=1 to minimize the cost of the total

energy drawn from the main grid, i.e.,
∑N

i=1 fi(Gi), while satisfy-
ing given storage and load constraints. We formulate the optimiza-
tion problem as

(P1) : min
{Ci,Di,Gi}

N∑
i=1

fi(Gi)

s.t.S1 + αc

i∑
k=1

Ck − 1/αd

i∑
k=1

Dk ≥ Smin, i = 1, . . . , N (6)

S1 + αc

i∑
k=1

Ck − 1/αd

i∑
k=1

Dk ≤ Smax, i = 1, . . . , N (7)

S1 + αc

N∑
k=1

Ck − 1/αd

N∑
k=1

Dk ≥ S, (8)

Gi +Δi +Di ≥ Ci, i = 1, . . . , N (9)

Ci ≥ 0, Di ≥ 0, Gi ≥ 0, i = 1, . . . , N, (10)

where (6) and (7) correspond to the storage constraints in (2), (8)
represents the minimum storage requirement at slot N + 1 in (3),
and (9) stands for the energy neutralization constraints. Due to the
unknown prediction error δk’s in (4) at each slot i with k > i, (P1)
is in general a challenging problem to solve. Dynamic programming
technique is commonly used to solve problems of similar structures
to (P1), which provides the optimal solutions if δi’s are modeled as
a stationary stochastic process with known distribution. However,
due to the “curse of dimensionality” problem, the optimal solution
by dynamic programming in general incurs an exponentially grow-
ing complexity in terms of the number of decision variables as N
increases. Moreover, in practice, the renewable energy generated
and/or load demand cannot be exactly modeled by stationary pro-
cesses. Therefore, this motives our work to propose an alternative
approach for solving (P1) in real life. First, we consider an off-line
optimization of (P1), by assuming that the net energy profile, i.e.,
{Δ1, . . . ,ΔN}, is known ahead of time with no prediction errors,
i.e., δi = 0, i = 1, · · · , N . We then propose an efficient algorithm
to solve (P1) in the off-line case. Next, based on the optimal off-line
solution, we further propose a new “online” algorithm for (P1) under
the practical setup with noisy predicted net energy profiles, subject
to arbitrary error sequence of δi’s.

3. OFF-LINE OPTIMIZATION
In this section, we consider the off-line optimization for (P1) by as-
suming the net energy profile {Δ1, . . . ,ΔN} are known at the be-
ginning of slot i = 1. It is easy to verify that (P1) is a convex op-
timization problem [14], and thus can be solved by standard convex
optimization techniques such as the interior point method. However,
to draw more insights to the solution, we apply the Lagrange duality
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method to solve (P1) and obtain a closed-form optimal solution. Due
to the space limitation, all proofs in this section are omitted and will
be presented in the journal version of this paper.

Let νi, νi, i = 1, . . . , N , and ω be the Lagrange dual variables
associated with the constraints (6), (7), and (8), receptively. Define

νi =
N∑

k=i

(νk − νk), i = 1, . . . , N. (11)

Then, the Lagrangian of (P1) is expressed as

L(ω, {νi}, {νi}, {Ci}, {Di}, {Gi})

=
N∑
i=1

fi(Gi) +
N∑
i=1

(
νi + ω

)(
Di/αd − αcCi

)− ωS1 + ωS

− ( N∑
i=1

νi
)
(S1 − Smin)−

( N∑
i=1

νi
)
(Smax − S1). (12)

Accordingly, the dual function of L(·) is given by

g(ω, {νi}, {νi}) = min
{Ci,Di,Gi}

L(ω, {νi}, {νi}, {Ci}, {Di}, {Gi})

s.t. (9), (10). (13)

As a result, the dual problem of (P1) is given by

(D1) : max
ω≥0,{νi≥0},{νi≥0}

g(ω, {νi}, {νi}). (14)

Since (P1) is convex and satisfies the Slater’s condition, strong du-
ality holds between (P1) and (D1) [14]; thus, we can solve (P1)
optimally by solving (D1) equivalently. In the following, we first
obtain g(ω, {νi}, {νi}) with given ω ≥ 0, νi ≥ 0, and νi ≥ 0,
i = 1, . . . , N , by solving the minimization problem in (13), and
then search over ω, {νi}, and {νi} to maximize g(ω, {νi}, {νi}) as
shown in (14).

First, by denoting {C∗
i , D

∗
i , G

∗
i } as the optimal solution for the

problem in (13), we have the following two lemmas.

Lemma 3.1. In order for g(ω, {νi}, {νi}) to be bounded from be-
low, it must hold that νi ≥ −ω, i = 1, . . . , N .

Lemma 3.2. There always exists an optimal solution for problem
(13) satisfying that C∗

i ·D∗
i = 0, i = 1, . . . , N .

Lemma 3.2 is intuitive since in general it is not optimal for the
energy storage system to charge and discharge at the same time slot
given efficiency factors 0 < αc < 1 and 0 < αd < 1.

With Lemmas 3.1 and 3.2 and by applying the Karush-Kuhn-
Tucker (KKT) conditions [14], we obtain the optimal closed-form
solution of (13) in the following proposition.

Proposition 3.1. The optimal solution to problem (13) is given by

C∗
i =

[
F−1
i (max(Fi(0), αcω + αcνi)) + Δi

]+
, (15)

D∗
i =

[
−F−1

i (max(Fi(0), ω/αd + νi/αd))−Δi

]+
, (16)

G∗
i = [C∗

i −D∗
i −Δi]

+ , (17)

where [x]+ � max(0, x).

From Proposition 3.1, we can obtain g(ω, {νi}, {νi}) with
any set of ω ≥ 0, νi ≥ 0, and νi ≥ 0. Next, we maxi-
mize g(ω, {νi}, {νi}) over ω, {νi}, and {νi} to solve the dual
problem (D1) given in (14). Note that (D1) is always a con-
vex optimization problem [14]; however, g(ω, {νi}, {νi}) is not
necessarily differentiable. Nevertheless, it can be verified that

the subgradient of g(ω, {νi}, {νi}) always exists, which can

be expressed as S − (S1 + αc

∑N
k=1 C

∗
k − 1/αd

∑N
k=1 D

∗
k),

Smin − (S1 + αc

∑i
k=1 C

∗
k − 1/αd

∑i
k=1 D

∗
k), and (S1 +

αc

∑i
k=1 C

∗
k − 1/αd

∑i
k=1 D

∗
k) − Smax at ω, νi, and νi, respec-

tively, i = 1, . . . , N . Therefore, (D1) can be solved by subgradient
based methods such as the ellipsoid method [15], for which the
optimal (dual) solution can be obtained as ω�, {ν�

i }, and {ν�
i }.

Last, with the obtained ω�, {ν�
i } and {ν�

i }, the following propo-
sition provides an optimal closed-form solution of (P1).

Proposition 3.2. The optimal solution to (P1) is given by

C�
i = min

([
F−1
i

(
max(Fi(0), αcω

� + αcν
�
i )

)
+Δi

]+
,

(Smax − S�
i )/αc

)
(18)

D�
i = min

([− F−1
i

(
max(Fi(0), ω

�/αd + ν�i /αd)
)−Δi

]+
,

αd(S
�
i − Smin)

)
(19)

G�
i = [C�

i −D�
i −Δi]

+ , (20)

for i = 1, . . . , N , where ν�
i is defined in (11) with the given {ν�

i }
and {ν�

i }, and S�
i = S1 + αc

∑i−1
k=1 C

�
k − 1/αd

∑i−1
k=1 D

�
k.

Note that in Proposition 3.2, (18), (19) and (20) need to be com-
puted iteratively from i = 1 to i = N .

4. ONLINE ALGORITHM
In the preceding section, we have derived the optimal off-line en-
ergy scheduling solution that provides a performance upper bound
(or lower bound on the cost objective function in (P1)) for all online
energy management algorithms without assuming a perfectly known
net energy profile. In this section, based on the off-line solution, we
propose a new online algorithm for (P1) under the practical setup of
noisy net energy profile prediction, i.e., at each slot i, only the past
and current net energy profile, i.e., Δ1, . . . ,Δi, and the predicable
part in the future net energy profile, i.e., Δi+1, . . . ,ΔN , are known
to the microgrid, whereas the future prediction errors δi+1, . . . , δN ,
are unknown. Furthermore, under the special setup where the pre-
diction errors follow a stationary stochastic process with known dis-
tribution, we propose the dynamic programming based algorithm to
solve (P1), which is optimal in this particular case and thus serves
as the performance upper bound for our proposed online algorithm.
Nevertheless, note that our proposed online algorithm works even
with non-stationary or unknown prediction errors, while dynamic
programming approach in general does not.

4.1. Proposed Sliding-Window Based Online Algorithm
In this subsection, we propose our real-time energy management
algorithm by applying the off-line solution for (P1) together with
a “sliding-window” based sequential optimization. We define a
parameter M with 1 ≤ M ≤ N as the size of the sliding win-
dow. At each slot i, we regard the online optimization as a finite-
horizon off-line energy management problem over a window of
M slots, with an initial energy state given by Si, and an available
net energy profile over this window as Δi,Δi+1, . . . ,Δi+M−1.1

For the online optimization at slot i, we denote the decision

variables over the window of size M as {C(i)
j , D

(i)
j , G

(i)
j }Mj=1.

Then, we formulate the online optimization problem at slot i
similar to (P1), by replacing N and S1 in (P1) by M and Si,
f1(·), . . . , fN (·) in (P1) by fi(·), . . . , fi+M−1(·), Δ1,Δ2 . . . ,ΔN

in (P1) by Δi,Δi+1 . . . ,Δi+M−1, S in (P1) by Si+M−1, and fi-

nally {Ci, Di, Gi}Ni=1 in (P1) by {C(i)
j , D

(i)
j , G

(i)
j }Mj=1. We set

1Note that this window will exceed the N -slot horizon if i + M − 1 >
N . In this case, we use the predicted net energy profiles of the next N -slot
horizon.
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Si+M−1 = S if i+M−1 = N and Si+M−1 = 0 otherwise. More
specifically, we formulate the online problem at slot i as

min
{C(i)

j ,D
(i)
j ,G

(i)
j }Mj=1

M∑
j=1

fi+j−1(G
(i)
j )

s.t. Si + αc

j∑
k=1

C
(i)
k − 1/αd

j∑
k=1

D
(i)
k ≥ Smin, j = 1, . . . ,M

Si + αc

j∑
k=1

C
(i)
k − 1/αd

j∑
k=1

D
(i)
k ≤ Smax, j = 1, . . . ,M

Si + αc

M∑
k=1

C
(i)
k − 1/αd

M∑
k=1

D
(i)
k ≥ Si+M−1,

G
(i)
1 +Δi +D

(i)
1 ≥ C

(i)
1 ,

G
(i)
j +Δj +D

(i)
j ≥ C

(i)
j , j = 2, . . . ,M

C
(i)
j ≥ 0, D

(i)
j ≥ 0, G

(i)
j ≥ 0, j = 1, . . . ,M. (21)

Problem (21) can be solved for each time slot i by the similar
algorithm for solving (P1) in Section 3, via a change of vari-
ables/parameters as specified above. We denote its optimal solution

as {C(i)�
j , D

(i)�
j , G

(i)�
j }Mj=1. Accordingly, the proposed online al-

gorithm sets the decision variables at each slot i as Conline
i = C

(i)�
1 ,

Donline
i = D

(i)�
1 , and Gonline

i = G
(i)�
1 , i = 1, . . . , N .

Remark 4.1. The sliding-window length M is a key design param-
eter for the proposed online algorithm. Specifically, larger M is
desirable for the case with small prediction error δi’s to fully exploit
the benefit of long-term prediction, while smaller M is preferable
when the prediction errors are large so that the predicable net en-
ergy profile is rendered less useful as the window length is increased.

4.2. Dynamic Programming based Online Algorithm
For comparison, we consider the conventional dynamic program-
ming method to solve (P1) by assuming a special case where the
prediction errors, δ1, . . . , δN , follow a stationary stochastic process
with known distribution. Indeed, the dynamic programming based
online algorithm minimizes the expected cost of the total energy
drawn from the main grid, i.e.,

∑N
i=1 E[fi(Gi)], subject to (6)-(10).

We thus have the following proposition.

Proposition 4.1. Given Δ1 and S1, the optimal value achieved
by minimizing

∑N
i=1 E[fi(Gi)] subject to (6)-(10), is given by

J1(Δ1, S1), which is computed recursively based on the Bellman
equations, starting from JN (ΔN , SN ), JN−1(ΔN−1, SN−1), and
so on until J1(Δ1, S1):

JN (ΔN , SN ) = min
CN ,DN ,GN

fN (GN )

s.t.S ≤ SN + αcCN − 1/αdDN ≤ Smax,

GN +ΔN +DN ≥ CN ,

CN ≥ 0, DN ≥ 0, GN ≥ 0. (22a)

Ji(Δi, Si) = min
Ci,Di,Gi

fi(Gi) + Ji+1(Si + αcCi − 1/αdDi)

s.t.Smin ≤ Si + αcCi − 1/αdDi ≤ Smax,

Gi +Δi +Di ≥ Ci,

Ci ≥ 0, Di ≥ 0, Gi ≥ 0, (22b)

for i = 1, . . . , N − 1, where J i+1(Si + αcCi − 1/αdDi) =
EΔi+1 [Ji+1(Δi+1, Si + αcCi − 1/αdDi)], and EΔi [ · ] denotes
the expectation over Δi. An optimal policy is accordingly given
by π∗ =

{
CDP

i (Δi, Si), D
DP
i (Δi, Si), G

DP
i (Δi, Si)

}N

i=1
, where

CDP
i (·), DDP

i (·), and GDP
i (·) is the optimal solution to (22).
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Fig. 2: Energy cost versus the prediction error variance σ2.

Note that the dynamic programming based algorithm serves as a
upper bound (or lower bound on the total cost) for any other online
algorithms, provided that δi’s follow a stationary stochastic process
with known distribution as assumed.

5. NUMERICAL RESULTS
In this section, we provide numerical results to evaluate the perfor-
mance of our proposed algorithms. We also consider a heuristically
designed myopic online algorithm, as proposed in [12], for compar-
ison. In this algorithm, at each slot i, the decision variables Ci ,Di

and Gi are determined based on only the energy state Si and the
net energy profile Δi at the current slot. Specifically, for Δi > 0,
the energy storage is charged up to Smax; whereas for Δi < 0, the
energy storage is first discharged to meet the load demand until it
reaches its minimum level (Smin for i < N and S for i = N ), and
then the residual load (if any) is compensated by the main grid.

We consider a horizon of one week by setting N = 168 with
each slot representing one hour. We assume a quadratic time-
invariant cost function given in (5), where ai = 0.03125 $/MW2,
bi = 1 $/MW, and ci = 0, ∀i ∈ {1, . . . , N}. We also set αc = 0.7,
αd = 0.8, S1 = 0, Smin = 0, S = 0, and Smax = 400 MW. The
predictable net energy profile {Δi} is taken as the hourly predicted
wind energy generation over one week period (27 June, 2013 to 3
July, 2013) in the Ireland power grid [16] offset by a time-invariant
demand load of 600 MW. Furthermore, we assume that δi’s follow
independent and identical Gaussian distributions with zero mean
and variance σ2. For the proposed sliding-window based online
algorithm, we consider two window sizes of M = 2 and M = 8.

Fig. 2 shows the average energy cost versus the prediction er-
ror variance σ2. It is observed that the energy cost of all considered
algorithms increases with increasing σ2, since larger σ2 results in
more substantial power fluctuations and thus the deficit in the net
energy profile may not be fully compensated by the surplus due
to limited storage capacity. It is also observed that our proposed
sliding-window based online algorithm achieves a cost very close
to the minimum cost by the optimal dynamic programming based
algorithm, and also outperforms notably over the myopic online al-
gorithm. Furthermore, it is observed that the case of M = 8 outper-
forms that of M = 2 when σ2 is small, while the opposite is true
when σ2 is large. This is expected, as explained in Remark 4.1.

6. CONCLUSION
This paper studies the finite-horizon real-time energy scheduling for
storage-capable microgrids to minimize the energy cost of conven-
tional generation. Based on the optimal solution in the case of off-
line optimization, we develop a new online algorithm for real-time
energy management under the practical setup with noisy predicted
net energy profiles subject to arbitrary errors. It is hoped that our
results provide new insight to practically optimally integrating re-
newable energy and deploying energy storage in microgrid systems.
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