
ASYNCHRONOUS ALTERNATING DIRECTION METHOD OF MULTIPLIERS
APPLIED TO THE DIRECT-CURRENT OPTIMAL POWER FLOW PROBLEM

Azary Abboud?† Romain Couillet? Mérouane Debbah? Houria Siguerdidjane†

? Alcatel-Lucent Chair on Flexible Radio - SUPÉLEC, Gif-sur-Yvette, France
†Automatic Control Department - SUPÉLEC, Gif-sur-Yvette, France.

ABSTRACT
In a large network of agents, we consider a distributed convex
optimization problem where each agent has a private convex cost
function and a set of local variables. We provide an algorithm
to carry out a multi-area decentralized optimization in an asyn-
chronous fashion, obtained by applying random Gauss-Seidel itera-
tions on the Douglas-Rachford splitting operator. As an application,
a direct-current linear optimal power flow model is implemented
and simulations results confirm the convergence of the proposed
algorithm.

Index Terms— convex optimization; operator splitting;
distributed control; optimal power flow.

I. INTRODUCTION

In this paper, we focus on power grid networks and specifically
on the direct-current optimal power flow (DC-OPF) problem [1].
The network contains a set of N agents that control their own
generated powers. These agents aim at minimizing the global
generation cost in a distributed manner. However, this minimization
is constrained by the grid infrastructure and the physical limits on
the available power. We formulate this problem generically as a
convex optimization problem with linear constraints as follows

minimize
{xv, v∈{1,...,N}}

N∑
v=1

fv(xv)

subject to
aT
i (xT

1 , . . . ,x
T
N)T = bi i = 1, . . . ,m,

xv,min ≤ xv ≤ xv,max v = 1, . . . , N.
(1)

where each node v ∈{1, . . . , N} controls a vector of local vari-
ables xv = (x

(
∑v−1

ϑ=1
nϑ+1)

, . . . , x(
∑v

ϑ=1
nϑ))

T ∈Rnv , bounded by
xv,min ∈Rnv and xv,max ∈Rnv . The local operating cost of
a node v is given by the closed proper convex function fv :
Rnv 7−→ R. Note that fv is proper if ∃xv ∈Rnv such that
fv(xv)< +∞, and ∀xv ∈Rnv , fv(xv)>−∞. Each equality
constraint i, i∈{1, . . . ,m}, is characterized by the vector of
coefficients ai = (ai1, . . . , aij , . . . , ain)T ∈Rn, with n =

∑N
v=1 nv ,

and bi ∈R. Unless stated otherwise, all the vectors are supposed
to be column vectors.

To solve the problem distibutively, we decompose the overall
system into L smaller areas/micro grids. Each area has its own
subproblem and it seeks to update its variables while having
limited coordination with the other areas. Several mathematical
methods can be used to perform the distributed optimization,
such as the augmented Lagrangian technique [2], the auxiliary
problem principle [3] and the approximate Newton directions [4],
[5]. These methods usually require the computation of the Hessian

of the global objective function, the inversion of large matrices,
synchronization and coordination between the areas and may have
convergence issues [6]. The alternating direction method of mul-
tipliers (ADMM) [7], [8], in which the augmented Lagrangian
of the problem is recursively minimized first with respect to
the primal variables and then with respect to the dual variables,
converges faster than the aforementioned methods and overcomes
all their problems, except the synchronization and the coordination
issues [8].

Synchronization induces latency in the computation of the solu-
tion because all the areas must wait for the slowest area to solve
its subproblem before carrying out another iteration. Moreover,
neighboring areas need to coordinate and communicate the values
of the variables coupling them. For these reasons, relying on
the recent results of [9], we derive an asynchronous distributed
algorithm with guaranteed convergence. The work presented in [9]
aims at finding the global state of the network by solving an
unconstrained optimization problem. The agents share the same
state which represents the global network state and they try to find
a consensus on the value of this individual variable. In contrast,
in this paper, every node has its own set of primal variables
that it seeks to determine, and the global cost of the network is
minimized subject to a set of equality and inequality constraints.
The update steps of this algorithm inherits the principle of ADMM
(i.e., alternating between the resolution of a primal and dual convex
optimization problems), but at each iteration, only one area is
randomly chosen to solve its subproblem. Since the areas are
assumed overlapping, no coordination takes place between them
and no inter-area communication is required. We give our algorithm
in a generic form, which makes it applicable to problems involving
distributed computations other than power systems.

The rest of the paper is organized as follows. We formulate
the problem in Section II. In Section III, we apply the Douglas-
Rachford (DR) splitting method in order to obtain our distributed
algorithm. Then, we derive in Section IV the asynchronous
distributed algorithm that we prove to converge. We provide an
implementation of the DC-OPF problem and simulations in Section
V. Section VI concludes the article.

II. PROBLEM FORMULATION
The network is represented by an undirected graph G = (V,E)

consisting of a set of N nodes, V , and a set of edges E. We
divide G into L overlapping areas Al, l∈{1, . . . , L}. For each
area Al, we assign a subset of vertices Vl⊂V and a subset of
edges El = {{u, v}; (u, v) ∈ V 2

l }∩ E such that
⋃L
l=1 Vl =V and⋃L

l=1 G(Vl) is connected, where G(Vl) is the sub-graph (Vl, El).
Let x = (xT

1 , . . . ,x
T
v , . . . ,x

T
N)T ∈Rn, A = [a1, . . . ,am]T ∈Rmn,

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 7814

b = (b1, . . . , bm)T∈Rm, xmin = (xT
1,min, . . . ,x

T
N,min)T∈Rn and

xmax = (xT
1,max, . . . ,x

T
N,max)T∈Rn. We convert problem (1) into

the following canonical form
minimize
x∈Rn

f(x) + g(z)

subject to Mx = z,
(2)

where f and g are two closed proper convex functions given by

f(x) =


∑
v∈V

fv(xv) if xv,min ≤ xv ≤ xv,max, ∀v ∈ V

+∞ otherwise,

g(z) =

0 if
n∑
j=1

zij = bi; aij = 0⇒zij = 0, ∀i = 1, . . . ,m

+∞ otherwise,
where z = (zT

1 , . . . ,z
T
l , . . . , z

T
L)

T , and zl =
∏
Vl
z′ is the projec-

tion of z′ = (z11, z12, . . . , zij , . . . , zmn)T on Vl given by∏
Vl

: Rmn → Rml

z′ 7→ z = (zij)(i,j)∈Il
. (3)

Il =
{

(i, j); aij 6= 0, j ∈
⋃
v∈Vl

{∑v−1
ϑ=1 nϑ + 1, . . . ,

∑v
ϑ=1 nϑ

}}
and ml = |Il|. Thus, zl is the vector composed by the
elements {zij} of z′ corresponding to the jth component
of xv having a nonzero coefficient aij in the ith constraint
assigned to Al. M ′ = [diag(a1), . . . , diag(am)]T , where
diag(ai) is the diagonal matrix constituted by ai, and
Mx = ((

∏
V1
M ′x)T , . . . , (

∏
VL
M ′x)T)T .

Problem (2) is equivalent to problem (1). This is proved by letting
aijxj = zij and then summing on j for each constraint i.

The dual of the minimization problem (2) is given by [10]
minimize
λ∈Rm

{f∗(−M∗λ) + g∗(λ)} , (4)

where λ = (λT
1 , . . . ,λ

T
l , . . . ,λ

T
L)

T with λl =
∏
Vl
λ′, and

λ′ = (λ11, . . . , λmn)T ∈Rmn being the Lagrangian multipliers
vector associated to the set of constraints aijxj = zij . The functions
f∗ and g∗ are the Fenchel’s conjugate of f and g respectively, i.e.,
f∗(u) = sup

x
{〈x,u〉 − f(x)}, where 〈x,u〉 = xTu is the inner

product of x and u.
By strong duality, the optimization problem reduces to finding

the minimum of the dual (4).

III. MONOTONE OPERATOR THEORY AND
DISTRIBUTED OPTIMIZATION

Using monotone operator theory basics, we prove that the dual
problem (4) can be solved distributively by applying the proximal
point algorithm (PPA) on the Douglas-Rachford (DR) splitting
operator.

III-A. Monotone operator theory
Take an Euclidean space set Y . We define its power set, denoted
P(Y) = 2Y , as the family of all subsets of Y including the empty set
∅ and Y itself. An operator D : X → Y maps every point x∈X
to a point Dx ∈ Y , while a set valued operator D : X → 2Y maps
every point x∈X to a set Dx⊂Y .

An operator D (single-valued or multi-valued), is characterized
by its:
• graph: gra (D) = {(x,y) ∈ X × Y | y ∈ Dx} ;
• domain: dom (D) = {x ∈ X | ∃ y ∈ Y : (x,y) ∈ D} ;
• inverse: D−1 = {(y,x) ∈ Y × X | (x,y) ∈ gra D} ;
• zero’s set: Zer (D) = D−10 = {x ∈ X | 0 ∈ Dx} ;
• set of fixed points: Fix (D) = {x ∈ X | x ∈ Dx} .

III-B. Proximal point algorithm
Let λ be the minimum of the dual problem, and D(λ) =
−M ∂f∗(−M∗λ)+∂g∗(λ) its subgradient mapping. By Fermat’s
rule [10, Th 16.2], λ is also the zero of D. D itself is a single
valued maximal monotone operator [11]. Thus, by [12, Th 3.6]
and for any ρ > 0, the resolvent JρD = (I + ρD)−1 of D is a
single valued firmly nonexpansive operator with full domain. The
following Lemma is then applicable.
Lemma 1 (PPA, [13]): Given a maximal monotone operator

D, such that Zer (D) 6= ∅. Then Fix (JρD) is a singleton and
Zer (D) = Fix (JρD). Moreover, starting from any initial point
ζ0 ∈ dom (D), ζk → Fix (JρD), where ζk+1 = JρD(ζk), k ≥ 1.

Hence, instead of searching for Zer (D), we search for
Fix (JρD). That is, starting from any initial point ζ0, we iterate
ζk+1 = JρD(ζk) until convergence.

III-C. The distributed optimization
D can be written as D =T + U , where T =−M∂f∗ ◦ (−M∗)

and U = ∂g∗ are two maximal monotone operators [11] . To apply
the PPA, we need to compute Jρ(T+U) which is not an easy task.
From the structure of D, searching for Zer (D) is equivalent to
searching for Zer (T +U). This naturally calls for the DR splitting
method in which the operators T and U are employed in separate
steps. The DR method is indeed used to find the zero of the sum
of two maximal monotone operators. The DR splitting operator, on
which we apply the PPA, is given by
R = {(ν + ρz,λ− ν) ; (ν,α) ∈ T, (λ,z) ∈ U

and ν + ρα = λ− ρz}. (5)
Since T and U are maximal monotone operators, R is also a
maximal monotone operator [7]. The resolvent S = (R + I)−1 of
R is firmly nonexpansive with full domain, it is given by
S = JλT ◦ (2JλU − I) + (I − JλU)

= {(λ+ ρz,ν + ρz) ; (ν,α) ∈ T, (λ,z) ∈ U
and ν + ρα = λ− ρz}, (6)

with Fix (S) = {λ+ ρz; (λ,z) ∈ U, (λ,−z) ∈ T} . (7)
Lemma 2: If ζ̄ = Zer (R), then λ̄ =JρU (ζ̄) = Zer (T + U),

where JρU = {(λ+ ρz,λ) ; (λ,z) ∈ U} is the resolvent of U .
Proof: Let ζ̄ = Zer (R) then, ζ̄ = Fix (S). From (7), there is

a unique (λ̄, z̄)∈U verifying ζ̄ = λ̄ + ρ z̄ and T (λ̄) =−z̄. Then,
JρU (ζ̄) =JρU (λ̄+ ρ z̄) = λ̄ and (T + U)(λ̄) =T (λ̄) + U(λ̄) = 0.
Thus, λ̄= Zer (T + U).

From Lemma 2, we conclude that trying to find Zer (R) is
equivalent to finding Zer (T + U). Hence, we apply PPA on R,
i.e., we recursively search for ζ̄ = Fix (S).
Lemma 3: For any ζ =λ + ρz, such that (λ,z)∈U and

λ =JρU (ζ), there is a unique x such that the following is valid
(i) S(ζ) = JR(ζ) = λ+ ρMx,
(ii) x = argminx Lρ(x,z;λ),

where ρ > 0 and Lρ(x,z;λ) is the augmented Lagrangian of the
general problem (2) given by
Lρ(x,z;λ)

∆
= f(x) + g(z) + 〈λ,Mx− z〉+ ρ

2
‖Mx− z‖2.

Proof: (i)R(ζ) =λ−ν where (ν,α)∈T and ν+ρα =λ−ρz.
T is the maximal monotone operator given by T =−M∂f∗ ◦
(−M∗). Therefore, α∈−M∂f∗(−M∗ν) and there is a unique
x∈ ∂f∗(−M∗ν) such that α =−Mx. From (6) we have
S(ζ) =ν + ρz =λ − ρα. But α =−Mx, we conclude that
S(ζ) =λ+ ρMx.

7815

(ii) Since f is a closed proper convex function, then by
the Fenchel-Young inequality [10, Prop 16.9] the expression
x∈ ∂f∗(−M∗ν) is equivalent to −M∗ν ∈ ∂f(x), it follows that
0∈ ∂f(x)+M∗ν. From the output of (5), we have ν =λ−ρ(z+
α). We also have α =−Mx. Then, ν =λ+ρ(Mx−z). It follows
that 0∈ ∂f(x) +M∗ν which translates to 0∈ ∂f(x) +M∗λ+
ρM∗(Mx− z). We conclude that x = argminx Lρ(x,z;λ).

Next, we write explicitly the kth recursion of the PPA applied
to R, i.e., the recursion ζk+1 = S(ζk).
Lemma 4: Let ζ0 =λ0 + ρz0 such that λ0 =JρU (ζ0) and

(z0,λ0)∈U . Define ∀ k ≥ 0, ζk+1 = S(ζk). Let λk =JρU (ζk),
(zk,λk)∈U and xk+1 the unique x defined in Lemma 2 such
that S(ζk) = λk + ρMx. Then the following holds

xk+1 = argmin
x
Lρ(x,zk;λk),

zk+1 = argmin
z
Lρ(xk+1,z;λk),

λk+1 = λk + ρ(Mxk+1 − zk+1),

Proof: ζk =λk + ρzk, by Lemma 3 there is a unique
xk+1 such that S(ζk) =νk + ρzk =λk + ρMxk+1 and
xk+1 = argminx Lρ(x,z

k;λk).
To demonstrate the expressions of λk+1 and zk+1 we

use the hypothesis ζk+1 = S(ζk). On the one hand,
let ζk+1 =λk+1 + ρzk+1 where (λk+1,zk+1)∈U and
λk+1 =JρU (ζk+1), then λk+1 = ζk+1 − ρzk+1. On the other
hand, S(ζk) =λk + ρMxk+1 = ζk+1. Thus λk+1 =λk +
ρMxk+1 − ρzk+1. Moreover, zk+1 ∈U(λk+1), then by the
Fenchel-Young inequality [10, Prop 16.9] this is equivalent to
λk+1 ∈ ∂g(zk+1). Thus 0∈ ∂g(zk+1) − λk+1, it follows that
0∈ ∂g(zk+1) − λk + ρzk+1 − ρMxk+1, which is equivalent to
zk+1 = argminz Lρ(x

k+1,z;λk).
These three update steps of xk+1, zk+1 and λk+1 can be

distributed among the L subsystems as demonstrated next.
Lemma 5 : Define Sl(ζ) = (λl +

∏
Vl
M ′x), i.e, the lth sub-

block of S(ζ) = ((λ1 +
∏
Vl
M ′x)T , . . . , (λL +

∏
Vl
M ′x)T)T .

For each area Al we have
xk+1
l = argmin

xl

∑
v∈Vl

fv(xv) + λkl
T
∏
Vl

(M ′x)

+
ρ

2
‖
∏
Vl

(M ′x)− zlk‖2 (8a)

zk+1
l = argmin

zl

− λkl
T
zl +

ρ

2
‖
∏
Vl

(M ′xk+1)− zl‖2 (8b)

λk+1
l = λkl + ρ(

∏
Vl

(M ′xk+1)− zk+1
l). (8c)

Proof: Hereafter, we prove that the decomposition is true for
x. The same argumentation can be used for z and λ.
xk+1= argminx f(x)+g(zk)+〈λk,Mx−zk〉+ ρ

2
‖Mx−zk‖2

= argminx f(x) + 〈λk,Mx〉+ ρ
2
‖Mx− zk‖2

= argminx f(x)+
L∑
l=1

{λkl
T ∏

Vl
(M ′x)+ ρ

2
‖
∏
Vl

(M ′x)− zkl ‖2}.

This expression is separable into L independent parts xk+1
l where

xl =
∏
Vl

(x)∈Rnl and nl =
∑
v∈Vl

nv . The sub-block xk+1
l

is assigned to Al and contains only the components of xk+1

corresponding to the nodes v ∈ Vl.
As a conclusion, when we use the PPA on the DR splitting oper-

ator R, by Lemma 1 we can iteratively find the solution x̄ of (1).
However, if every area Al solves the subproblem given by (8a), (8b)
and (8c) at every iteration k, we obtain the synchronous distributed
algorithm, ADMM [7]. In the next section, we prove that applying

these update steps in a random fashion, where the subproblem of a
randomly chosen area is solved at each iteration, converges to the
solution of (1).

IV. ASYNCHRONOUS DISTRIBUTED OPTIMIZATION
The Gauss-Seidel method is a method of successive displacement

used to find an approximate solution of a linear system of equations
starting from any initial point, and iterating till a stopping criterion
is fulfilled.

As stated in the previous Section, when we iterate ζk+1 =S(ζk),
we obtain the well-known synchronous ADMM algorithm. In
order to obtain an asynchronous algorithm, the updating process
should be endowed with a random behavior. To this end, let
ζ = (ζT

1 , . . . , ζ
T
L)T and suppose S(ζ) = (ST

1 (ζ), . . . ,ST
L (ζ))T . We

define for each area Al, the operator Ŝl: Y → Y as
Ŝl(ζ) = (ζT

1 , . . . , ζ
T

l−1,S
T
l (ζ), ζT

l+1, . . . , ζ
T

L)T , (9)
and we use the following theorem.

Theorem 1 [9, Th. 2] : Take a firmly nonexpansive operator
S = (ST

1 , . . . ,ST
L)T with full domain on Y and a sequence of

i.i.d. random variables (ξk)k∈N. Starting from any initial value ζ0,
the random iterates, ζk+1 = Ŝξk+1(ζk) converges almost surely
to a random variable supported by Fix (S) (when Fix (S) 6= ∅).

In our case, the expression of the resolvent S is simpli-
fied to S(ζ) = ((

∏
Vl
λ′ + M ′x)T , . . . , (

∏
Vl
λ′ + M ′x)T)T

divided between the L areas , and we define Ŝl as in (9). We
choose a sequence of i.i.d. random variables (ξk), and we iterate
ζk+1 = Ŝξk+1(ζk) (i.e., if ξk+1 = l, then only the nodes of Al
update their variables). Then these iterations converge almost surely
to ζ̄ = Fix (S).

Thus, if we use the result of Theorem 1 along with the DR
splitting method, the random iterates lead to λ̄ =JρU (ζ̄) which
converges almost surely to Zer (D), i.e., the minimum of the
dual problem (4). That is, by applying the random Gauss-Seidel
iterations on the DR splitting method, we obtain an asynchronous
iterative distributed process, named the asynchronous ADMM. This
algorithm is given by solving (8a) to (8c) for a randomly chosen
area Al at each iteration k. This leads us to the solution x̄ of (1).

To summarize our asynchronous ADMM algorithm, at the kth

iteration, we pick a random variable ξk+1 (as stated in Theorem 1),
and consequently the area, Al, whose l = ξk+1 is chosen to perform
the update process by solving its subproblem given by (8a) to (8c)
while the other areas retain their older values of the primal and
dual variables. The result converges almost surely to the solution
of (1).

V. IMPLEMENTATION AND SIMULATIONS
To illustrate our result, we consider the DC-OPF problem repre-

sented as (1), where we aim to control and optimize the operation
of a power system so as to meet the underlying energy demand,
with respect to a given objective function and subject to physical
constraints on the available power and the grid infrastructure. We
extract A and b from the linearized DC power flow equations
PD =PG − P and P =Bθ, where PD ,PG and P represent
respectively the power demanded, generated and transmitted by the
agents, θ is the voltage phase vector and B is the imaginary part
of the admittance matrix Y , assumed to be purely imaginary. We
divide the network into L overlapping connected areas and we solve
the subproblem (8a), (8b) and (8c) for a given area Al. Each node

7816

1 2

34

5 6

78

41 42

4344

45 46

4748

9

Area 1 Area 2 Area 11 Area 12

Fig. 1. Network of N = 48 nodes divided into L = 12 overlapping
control areas.

1 2

34

5 6

78

13 14

1516

179 10

1112
Area 1 Area 2 Area 3

18

1920

Fig. 2. Network of N = 48 nodes divided into L = 6 overlapping
control areas.

v ∈Vl has 3 primal variables indexed by j ∈{3v− 2, 3v− 1, 3v}
with a linear cost function fj(xj) = cjxj , the associated update
expressions are given by

xk+1
j =max{xj,min,min{xj,max, xkj −

1∑
i

a2
ij

∑
i

aijri(x
k
l)

dl(i)

− 1

ρ
∑
i

a2
ij

(cj +
∑
i

aijλ
k
ij)}}, (10)

λk+1
ij =λkij +

ρ

dl(i)
ri(x

k+1
l), (11)

where each constraint i∈{ip, . . . , iq} is characterized by its degree
d(i) (i.e., the number of nonzero elements {aij}), by dl(i) its
degree with respect to Al (i.e., the number of nonzero elements
{aij} that corresponds to v ∈Vl) and by its residual with respect
to Al, ri(xkl) =

∑
j aijxj−

dl(i)
d(i)

bi. The update step of zij reduces

to zk+1
ij = aijxk+1

j − ri(x
k+1
l

)

dl(i)
which is not involved in the above

expressions and can be eliminated. It should be pointed out that
for each i, λij is the same ∀j ∈ {1, . . . , n}.

Let V = {1, . . . , 24} and E = {1, . . . , 35} be the set of nodes and
edges respectively. The network is first divided into L = 12 then to
L = 6 connected areas, as depicted in Fig. 1 and Fig. 2 respectively.
Some nodes are shared, such as the nodes {5, 9, . . . , 45} in Fig.
1, and {9, 17, . . . , 41} in Fig. 2. We apply, using Matlab, the
derived synchronous and asynchronous ADMM algorithms and
we choose ρ < 2 because the convergence rate is degraded for
larger values of ρ. We examine the convergence to the theoretical
global cost and the global network state. If we compare upon the
number of iterations performed, we obtain the mean global cost
evolution (Fig. 3(a)) and the normalized mean squared deviation
NMSD =E{‖x− xtheoretical‖2/‖xtheoretical‖2} of the primal
variables from the theoretical values (Fig. 3(b)). These plots prove
the convergence of the derived algorithms, we also observe that
having larger areas increases the convergence rate. In Fig. 4(a)
and Fig. 4(b) we compare the evolution of the mean global cost
and the NMSD with respect to the number of updates performed.
In synchronous ADMM, at each iteration, all the nodes update and
exchange their variables, while in the asynchronous algorithm, only
the nodes of a randomly chosen area update their variables without
communicating with the other areas (i.e., if we take a window of
iterations, we may observe that one area updated more than one
time its variables, while other areas were inactive). Thus, if we

0 1000 2000 3000 4000
5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6
x 10

4

Iteration k

M
e

a
n

 G
lo

b
a

l
c
o

s
t

Theoretical

Synchronous ADMM

Asynchronous ADMM, L=6

Asynchronous ADMM, L=12

(a) Mean global cost evolution

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Iteration k

N
M

S
D

Synchronous ADMM

Asynchronous ADMM, L=6

Asynchronous ADMM, L=12

(b) Normalized mean squared deviation

Fig. 3. Performance of the proposed ADMM algorithms with
respect to the number of iterations performed, N = 48, ρ = 1.8.

0 100 200 300 400
5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6
x 10

4

Number of updates/48

M
e

a
n

 g
lo

b
a

l
c
o

s
t

Theoretical

Synchronous ADMM

Asynchronous ADMM, L=6

Asynchronous ADMM, L=12

(a) Mean global cost evolution

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

N
M

S
D

Number of updates/48

Synchronous ADMM

Asynchronous ADMM, L=6

Asynchronous ADMM, L=12

(b) Normalized mean squared deviation

Fig. 4. Performance of the proposed ADMM algorithms with
respect to the number of updates performed, N = 48, ρ = 1.8.

performed the same amount of updates as the synchronous version
of ADMM, our algorithm would lead to the same result although
theses updates are not equally divided between the areas.

VI. CONCLUSION

In this paper, we have presented an iterative decentralized solver
of convex optimization problems in large networks. The derived
algorithm divides the optimization problem into L subproblems,
each is then solved independently of the other subproblems. We
have proved that the algorithm converges almost surely to the
solution when the subproblems are solved synchronously (i.e., all
the subproblems are solved at each iteration) or asynchronously
(i.e., one subproblem is randomly chosen and solved at each itera-
tion). We have applied these distributed algorithms to the DC-OPF
problem. We have showed through simulations the convergence
to the optimal cost and the optimal network global state. Proving
the convergence of this asynchronous distributed optimization al-
gorithm in case of non-overlapping areas and studying the impact
of noisy data exchange are interesting topics for future work.

7817

VII. REFERENCES
[1] A. J. Wood and B. F. Wollenberg, Power generation, opera-

tion, and control. John Wiley & Sons, 2012.
[2] B. H. Kim and R. Baldick, “Coarse-grained distributed op-

timal power flow,” Power Systems, IEEE Transactions on,
vol. 12, no. 2, pp. 932–939, 1997.

[3] A. Losi and M. Russo, “On the application of the auxiliary
problem principle,” Journal of optimization theory and appli-
cations, vol. 117, no. 2, pp. 377–396, 2003.

[4] A. J. Conejo, F. J. Nogales, and F. J. Prieto, “A decomposition
procedure based on approximate newton directions,” Mathe-
matical programming, vol. 93, no. 3, pp. 495–515, 2002.

[5] D. G. Luenberger, Linear and nonlinear programming.
Springer, 2003.

[6] D. Kalyanmoy, Optimization for engineering design: Algo-
rithms and examples. PHI Learning Pvt. Ltd., 2004.

[7] J. Eckstein and D. P. Bertsekas, “On the Douglas–Rachford
splitting method and the proximal point algorithm for maximal
monotone operators,” Mathematical Programming, vol. 55,
no. 1-3, pp. 293–318, 1992.

[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed Optimization and Statistical Learning via the
Alternating Direction Method of Multipliers,” Foundations
and Trends R© in Machine Learning, vol. 3, no. 1, pp. 1–122,
2011.

[9] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Asyn-
chronous Distributed Optimization using a Randomized Al-
ternating Direction Method of Multipliers,” arXiv preprint
arXiv:1303.2837, 2013.

[10] H. H. Bauschke and P. L. Combettes, Convex analysis and
monotone operator theory in Hilbert spaces. Springer, 2011.

[11] R. Rockafellar, “On the maximal monotonicity of subdiffer-
ential mappings,” Pacific J. Math, vol. 33, no. 1, pp. 209–216,
1970.

[12] J. Eckstein, Splitting methods for monotone operators with ap-
plications to parallel optimization. PhD thesis, Massachusetts
Institute of Technology, 1989.

[13] R. T. Rockafellar, “Monotone operators and the proximal
point algorithm,” SIAM Journal on Control and Optimization,
vol. 14, no. 5, pp. 877–898, 1976.

7818

