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ABSTRACT

In this work, we consider the joint day-ahead power bidding and
load scheduling problem for the smart grid system, in the presence
of uncertain energy demand and renewable energy generation. We
formulate the problem as a convex stochastic program in which the
renewable energy generation and energy demand are modeled as ran-
dom variables. The objective is to minimize the cost in the day-ahead
market as well as the cost due to real-time power imbalance, by si-
multaneously selecting: /) the amount of power to buy in the day-
ahead market and 2) the schedule for the controllable load. We pro-
pose a stochastic alternating direction method of multipliers (SAD-
MM) to solve the resulting convex stochastic optimization problem
and analyze its convergence. The effectiveness of the proposed ap-
proach is demonstrated via numerical experiments using real solar
power data.

Index Terms— Smart grid, day-ahead power procurement, de-
mand side management, stochastic programming, alternating direc-
tion method of multipliers

1. INTRODUCTION

Large-scale integration of renewable energy sources (RESs) to
the power system is challenging. The intermittent nature of these
sources, such as wind and solar powers, makes it difficult to achieve
the desired balance between energy supply and demand, especial-
ly in cases where the demand in the grid is inelastic and random.
Demand side management techniques [1], which make the demand
elastic by judiciously managing controllable loads, have been pro-
posed to mitigate the effects of the supply and demand fluctuations.
For instance, multistage power procurement (e.g., day-ahead, hour-
ahead etc), coupled with appropriate load scheduling, has been
shown to result in a substantial cost saving for the smart grid sys-
tem [2].

In this paper, we focus on the power procurement decisions at
the day-ahead stage. These decisions are crucial since a significant
amount of power (more than 65%) is allocated and traded through
the day-ahead market [3]. Moreover, if such decisions can account
for the presence of RESs, then larger amount of RESs may be incor-
porated in the grid. However, the power bidding and load schedul-
ing decisions are challenging because the utilities only have limited
knowledge about the amounts of RES and power demand advance.
There have been some works that study the day-ahead power pro-
curement and load scheduling problem. In [4], a joint day-ahead
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power procurement and real-time neighborhood-wise home energy
management scheme was proposed using a Markov model for de-
ferrable loads. In [5], a game theoretic formulation was proposed
for day-ahead distributed energy and storage optimization. Howev-
er, RESs were not considered in these works. The work in [6] con-
sidered simultaneous day-ahead power procurement and real-time
load scheduling in the presence of RESs. In particular, a two-stage
stochastic optimization problem was formulated and stochastic sub-
gradient methods were used to solve the problem. Reference [7]
considered a different scheme with a quality-of-usage constraint on
the load scheduling optimization. However, the load models consid-
ered in [6, 7] do not fully describe the underlying problem. This in
turn makes the numerical results derived from these models less re-
liable since they may not reflect the actual impact on the power grid.
‘We note that in all the above mentioned works, the random demands
due to uncontrollable loads were not considered.

In this paper, we study the joint day-ahead power procuremen-
t and load scheduling problem in the presence of RESs and (un-
certain) random demands. We model the controllable loads as de-
ferrable loads (such as manufacturing plants, PHEV, washing ma-
chine), whose operation schedules can be deferred by the controller
under user-defined deadline constraints. We assume that the re-
questing times and operation deadlines of the controllable loads are
known in the day ahead stage. The latter can be determined by let-
ting the customers submit such information through their home en-
ergy management systems. We formulate the day-ahead joint power
procurement and load scheduling problem as a stochastic optimiza-
tion problem, whereby the goal is to minimize the total cost incurred
by day-ahead power bidding as well as the expected cost due to real-
time power imbalance. Solving the resulting stochastic optimization
problem turns out to be challenging, due to the following reasons:
1) there is no clear stochastic model for RESs and random demands,
and 2) the problem has a linear constraints coupling all the variables.
In this paper we propose a stochastic alternating direction method
of multipliers (SADMM) to efficiently solve the considered prob-
lem. We show that the proposed SADMM achieves an O(1/+/n)
rate of convergence, where n is the iteration index. Numerical re-
sults based on real solar power data show that the proposed approach
yields promising performance.

2. LOAD MODEL AND PROBLEM FORMULATION

In this section, we briefly review the deferrable load model and
present the joint power procurement and load scheduling problem.

2.1. Deferrable Load Model

We assume that the utility serves a neighborhood with /N customers
(e.g., factories and residential houses), and that each customer owns



M deferrable loads whose operation schedule can be deferred by
the utility, as long as the deadlines specified by the customers are
met. We use the tuple (i, m) to denote the mth load of customer 1.
The load profiles of the deferrable loads are known to the utility, and
once turned on, their operations cannot be interrupted. Examples of
deferrable loads include manufacturing plants in factories as well as
house appliances such as PHEV, dish washer and washing machine.

We adopt the signal model presented in [1], which describes the
load request times and load operating times by an arrival process
aim (t) and a departure process dim (t). Specifically, a:m (t) counts
the number of times that the load (i, m) has been requested at time
t, and dim (t) counts the total number of times that the load has been
launched to operate at time ¢. Thus, if the load (i, m) is requested
to operate at time ¢ then aim (t) — aim (t — 1) = 1, otherwise the
difference is zero. Similarly, dim (t) — dim (¢t — 1) = 1 if the load
is scheduled to launch at time ¢ and zero otherwise. Let @i (t),t =
1,..., Lim denote the profile of the load (i, m), where Liy, is the
length of operation. Then the total scheduled load for customer ¢ at
time ¢ can be expressed as [8]

M min{t,L;m, }

sit) =Y Y [dim(t—k+1) = dim(t = k)] dim (k). (1)
k=1

m=1

Further assume that the load (7, m) has a maximum tolerable delay
&im. Then the controller has to schedule the load to operate no later
than &;.,, time slots after it is being requested. Thus we have the
following constraints on dim () [8]

dim(t = 1) < dim(t) < im (1), dim () € Zs,  (2b)

where Z 4 denotes the positive integer set.

In addition to the deferrable loads, we assume that each cus-
tomer owns some uncontrollable loads, denoted by v;(t). Moreover,
we assume that the first V,- customers have installed either solar PVs
or wind mills so that they also serve as RESs, or equivalently as neg-
ative loads. Specifically, for each ¢ € {1,---, N}, e;(t) units of
energy are generated at time slot ¢. In summary, the total load in
the system at time slot ¢ is given by ¥ () = S°~ | (si(t) + vi(t)) —
Zfi’l ei(t). Note that both v;(¢) and e;(t) are random and unknown
beforehand.

2.2. Joint Day-ahead Power Procurement and Load Scheduling

We consider a wholesale day-ahead market scenario where an util-
ity purchases energy from the market to serve the customers in the
neighborhood. Specifically, the utility determines the power bids
p = [p(1),p(2),...,p(24)]" for the 24 hours in the next day.
Moreover, it makes the scheduling decision for the deferable loads
at the same time, by utilizing the the request times and the deadlines
(i.e., {aim (t) }i,m and {&im }i,m) made available by the customers.

In addition to paying for the day-ahead bids p, the utility has
to pay extra if, in real time, the power supply does not match the
demand (i.e., power imbalance occurs). In particular, if the supply
exceeds the demand, the utility has to pay for absorbing the excessive
power in a real-time market. Similarly, if the supply is insufficient,
then the utility is required to purchase additional amount of power in
the real-time market to cover the shortfall. Therefore, it is desirable
to minimize the cost incurred in the day-ahead market as well as the
cost caused by real-time power imbalance.

We assume that each day is divided into 96 periods, each of 15
minutes duration. Consequently, the power supply at a given time
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period ¢ can be expressed as p([%]), ¢ = 1,...,96. Let 7s(t)
and 7p(t) respectively denote the price for absorbing the exces-
sive power and the price for purchasing additional power at time

t,t =1,...,96. Then the real-time cost due to power imbalance is
given by
9% " + L +
> [m0 (1) - v)) +m0 (v -015D) |- @
t=1

where (z)% := max{z,0}. Unfortunately, since the uncontrollable
loads v; (t)’s and the RESs e;(t)’s are random and unknown a priori,
the utility is led to minimize the following expected cost

96 . + f N\t
e {30 1.0 (o1 — 0] +mate) (v - 0(15D) |},
t=1
where v := 3N [vi(1),...,v:(96)]" and e := 377 [ei(1), . . .,
€i(96)]”. Let Cy,(p) denote a convex cost function for power bids p.
The joint day-ahead power procurement and load scheduling prob-
lem is then formulated as

my cb(p>+TEv,e{§ {m(t)(p(f?)—w(t)>+
#n0 (00 -275D) |}
st dim (t — 1) < dim (), Vi, m, (4b)

Aim (t - gzm) < d1m(t) < Cbim(t), VZ, m, (40)

where 7 > 0 is a cost balance parameter, and the integer constraint
in (2b) is relaxed to dim (t) > 0O for the sake of tractability.

Note that although problem (4) is convex, finding its optimal
solution is still challenging because the expected cost in (4a) is dif-
ficult to evaluate and has no closed-form expression. Moreover, its
complicated objective function and constraint set make it difficult to
directly apply the existing stochastic optimization methods [9, 10].

In the next section we will propose an efficient algorithm for
problem (4). To facilitate the algorithm design, let us first rewrite

(4a) in a more compact form. Let d; := [di1,...,dim]" fori =
1,..., N. Then the deferrable load due to customer ¢ in (1) is lin-
ear in d; and can be expressed as s; := [s;i(1),...,5:(96)]7 =

¢;d;, ¥ i [8], where ¢, € R*9M i composed of ¢im (k), k =
1,...,Lim, m = 1,..., M. The constraint set in (4b) and (4c)
can also be expressed compactly as Dd; < 0, £; X d =< u,,
i=1,...,N, where D € R%M>*9M g 4 difference matrix; and
the upper and lower bounds wu;, £; are due to (4c). Consequently one
can rewrite problem (4) as

N
. T +
Ir’rélg Cb(p)+TEv,e{7rs (p®14+e_'”_z¢idi)
d;=0,Vi i=1
N

+7rg(z¢)idi+v—e—p®14)+} (5a)

i=1

s.t Ddij(),eijdijui7i:l,...,N7 (Sb)

where s = [m5(1),...,7s(96)]7, 7p 1= [mp(1),...,mp(96)]7,
® denotes the Kronecker product and 14 is the all-one vector in R*.
3. PROPOSED STOCHASTIC ADMM

In this section, we propose a new algorithm which can handle a gen-
eral class of stochastic convex problems including problem (5) as a



special case. At this point we will focus on describing the algorithm
in a high-level, while leaving its implementation details for solving
problem (5) to the next section.

Let us consider the following general stochastic convex opti-
mization problem

poin  Be[f(x, )] +9(y) st Ax+By=> (6)
where £ is a random vector whose probability distribution has a sup-
port in a set = C R™, f(x,§) : X x Z — R is a stochastic
function, and X C R™ and Y C R"2 are both nonempty com-
pact convex constraint sets. We assume that the expected function
E¢ [f(z, &)] is continuous and convex on X. For instance, if the
function f(-, ) is convex on X for every & € [, then clearly that
E¢ [f(x, &)] is convex. The fundamental challenge in solving prob-
lem (6) lies in the fact that E¢ [f(x, )] is usually difficult to eval-
uate [9]. In order to make the problem tractable, we make the fol-
lowing two standard assumptions: (A1) It is possible to generate
independent and identically distributed (i.i.d.) samples &1,&2, - -
of realizations of &; (A2) For a given input point (x,&) € X X E,
one can easily obtain a stochastic subgradient, denoted f(a, £), such

that E¢ [ f (2, §)] € OE¢ [f(, §)] (a subgradient of E¢ [f(z, §)]).
To proceed, we define the augmented Lagrangian function of

problem (6) as
Lo@y,N) = L@y, N) + LA+ By —b[°, ()
where

£($7y7 A) :E$ [f(wvﬁ)] +g(y) - <A,A:I:+By—b> (8)

is the Lagrangian function of (6), p > 0 is a penalty parameter, and
A denotes the dual variable associated with the linear constraint in
(6). The standard ADMM, when used to solve problem (6), consists
of the following three steps at each iteration k [11-13]

zF = argmin £, (x, y", )\k), ©)
xeEX

y* ! = argmin £, (2", y, A"), (10)
yey

A= AR — (A2t 4+ Byt — b). (1)

Unfortunately, the term E¢ [f(x, £)] is difficult to evaluate, so
the update in (9) is hard to implement. Therefore, we use the follow-
ing simple stochastic subgradient projection step to replace (9)

k
2 :Px{wk_,yk |:f(mk’£k)+pAT(Awk+Byk_b_ %)]}

where £” is a realization of £ at iteration k; Px (-) denotes the pro-
jection operator on X and 4* > 0 is the step size. Note that un-
der (A1) and (A2), we are able to obtain the stochastic subgradient
fx",&b).

The proposed SADMM algorithm is summarized below. We
should emphasize here that the SADMM algorithm proposed above
is different from existing stochastic ADMM methods such as the
one in [14] and the online ADMM in [15], which do not use in-
exact sub-gradient projection scheme to handle the subproblem of
"1 The authors of [16] and [17] are among the first to introduce
the stochastic components into ADMM. They design the algorithms
called D-LMS and D-RLS, which combine stochastic approximation
with consensus based ADMM to solve in-network adaptive process-
ing.
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Algorithm 1: Proposed Stochastic ADMM

Initialize 2°, y°, A°, pand 4°. Fork = 0,1,2,---, do
e Given a new realization £*, compute k! by (12),
o Compute y**! by (10),

o Compute A**1 by (11).

Next we present the convergence result of Algorithm 1. Since
the primal-dual optimal solution pair (z*,y*, X*) of (6) is also a
saddle point of the Lagrangian function (8), we have
L(w*7y*7 A) S ﬁ(w*,y*7A*) S ﬁ (w7y7 A*) b V(w7y7 A)'
Thus, a primal-dual e-optimal solution pair (&, %, A) to (6) would
satisfy

L@ 9N~ L(zyA) <o Y@y A (13

Theorem 1 Assume p > 0 and define v* = min { W, k;ﬂ }

Let {(x",y", \*)} be the sequence generated by Algorithm 1, and
= S a2t g = Yyt A= ST A Then

for any initial point (2°,y°, X°) and any feasible point (x,y, \),

we have
AN AT in 1 /
£($ 'Y ,A)—;C(.’B,y,A )Sn—_H{MO"_Ml TL+1},

where Mo and M,y are constants related to the initial points as well
as the size of the feasibility sets X and ).

‘We omit the proof here due to space limitation. From Theorem 1 we
can conclude that after n iterations the SADMM can find a solution
of (6) that is within O(1/+/n) to optimality.

3.1. Solving (5) by Proposed SADMM

In this section, we show how the proposed SADMM can be applied
to the joint power procurement and load scheduling problem (5). Let
z = Zf;l ¢;d; — p ® 14. Then (5) can be expressed as

- T +
min Cy(p) + 7 By {ms (e —v — 2)
d;€D;,y;~0,Vi

+7r$(z+vfe)+}
N
st.z=>» ¢, di—p®1s,Ddi+y; =0, (l4a)
i=1

where D; = {d;| £; < d; < u;} and y;’s are slack variables.

We consider the following correspondence between (6) and (14):
£ = (evv)’ T = [dT, sy d%va]Ta Yy = [y?a cee 7y17\;apT]T,
fx, &) =71(nl(e—v— z)+ + 7y (z4+v— e)+) and g(y) =
Cy(p), by which A, B and b in (6) can be obtained accordingly.
Using Algorithm 1 and the above correspondence, the updates of
d?“ and 2" are given by

df“ = max {&,min {diC — ’yk

N
pb; (Z ¢.df —p" @ 14—
i=1
}7%}7 15)
2P = 2k 7k [Tﬂ'p ® max {0, qk} — 77, © min {O, qk}

N )\k
- § dF—pfeo1,—Z"—2—||, (6
p( P, pPrR1y— 2z p)} (16)

i=1

AF al ur
z’t7) +> o:D” (Ddf +yf — —f)

g

=1



where ¢* = sign (z’C +oF — ek); ® denotes the componentwise
product, e.g. a ®b = (aibi, -, anbn)™; A, {pi}iL, are La-
grangian multipliers; p,{oi}fv:l are penalty parameters correspond-
ing to the linear constraints respectively. Further, the update of y can
be decomposed into the following independent steps

k
yf-‘—l:max{o’%iDderl}ai:lf“7N7 (17)
2

k+1

N k
. ) A

- ) B kel k41

p"T = arg min Cr(p) + || p® 14 E ¢ di +27 + P

i=1

(18)
where (18) usually has a closed-form solution. The update of multi-
pliers X, {g; } 2, follows directly. As seen, the proposed SADMM

for solving problem (5) involves simple steps and can be implement-
ed efficiently.

4. NUMERICAL EXPERIMENTS AND DISCUSSIONS

We consider a scenario where there are 50 residential customers
(N = 50) each of which owns 4 deferrable loads (M = 4) (washing
machine, dish washer, tumble dryer and PHEV) and 14 uncontrol-
lable loads. The detailed method to generate both the deferrable and
uncontrollable load signals follows [4,18]. We also assumed that the
first IV,- customers respectively own a PV solar panel which generate
RES to the customer. The real data of the PV signals are obtained
via NREL’s PV Watts calculator'. A periodic autoregressive (PAR)
model with a period of 24 hours [19] was built based on these real
data and used to generate independent realizations of e.

We consider a quadratic day-ahead power bidding cost C5(p)
= Zfil mrap(t)p(t)?, where the local marginal prices was ob-
tained online® on September 17, 2013. For comparison, we also
consider a deterministic counterpart of problem (5) where the ran-
dom parameters e and v are both replaced by their sample averages:

N L
. 1
min Cwv(p) + T{TrST (p®1s— Z ¢,di + T Z(eé _ vé))+
dre0.¥i i=1 =1

N L
(i —pe it . 2 ('~ e%)*} (192)
s.t DdijO,&jdijui,i:17,..,N7 (19b)
where L = 10, 000 is the sample number. We refer problem (19) as
a certainty equivalent control (CEC) formulation. Problem (19) can
be solved by the standard convex solver CVX [20].

Let us first consider the case where 20 out of 50 customers (40%)
own PV solar panels. The parameter 7 is set to 10. Fig. 1 shows the
signals of day-ahead power bidding p(t), RES e(t), total power sup-
ply p(t) + e(t) and the scheduled load (including the deferrable and
uncontrollable loads >°7° (s:(t) + vi(t))) by the proposed SAD-
MM. A total of 10000 realizations of real data e and v are used
when implementing SADMM. From this figure, we observe that the
proposed SADMM can provide promising power balance. We also
observe from this figure that the day-ahead bidding is less around
the noon since the solar PVs can generate more RES at noon. To

1http://www.nrel.gov/rredc/pvwatts/
’http://www2.ameren.com/RetailEnerqgy/
realtimeprices.aspx
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Total Power Supply
Power Bidding

Renewable Energy Supply
E— Load + loads)||

4 8 12 16 20 24
Time (hour)

Fig. 1. Power supply and scheduled load by proposed SADMM

—E— Day-Ahead Cost by SADMM
—H— Day-Ahead Cost by CEC

—6— Power imbalance Cost by SADMM
—E— Power imbalance Cost by CEC

Cost (dollar)

4 0.75 1

0.05 0.1 02 0.
RES penetration level (N/N)

Fig. 2. Day-ahead and power imbalance costs versus RES penetra-
tion level (%). The parameter T was set to 10.

understand how the penetration level of RESs to the grid can affect
the day-ahead and power imbalance costs, respectively, we plot in
Fig. 2 the optimal costs of problem (5) obtained by proposed SAD-
MM versus the RES penetration level N, /N. The costs due to the
solutions of the CEC formulation (19) are also presented. Firstly, we
observe that the proposed SADMM can yield lower costs than the
CEC formulation. Secondly, it can be seen that the day-ahead costs
can consistently decrease as there are more customers equipped with
solar PVs. The power imbalance costs can decrease as there are less
than 40% customers with solar powers, but the costs can increase
if there is a high level of RES penetration. This is reasonable as
more RESs induce more uncertainties and large deviation between
the day-ahead prediction and real-time true signals.

Finally, in Table 1, we compare the proposed SADMM with the
CEC formulation (19) for different values of the penalty parameters
7. Each value shown in the table represents the total cost of problem
(5) by the solutions of the proposed SADMM and the CEC formu-
lation (19). We observe that the proposed SADMM can consistently
yield lower costs and the gap between the CEC formulation increas-
es as the penalty parameter 7 decreases.

Table 1. Comparison between Proposed SADMM and CEC

T 30 10 1 0.1 0.01
CEC (19) 146.9 172.5 1486.3 2248.5 2961.5
SADMM 138.8 159.4 1220.6 1841.9 1912.5

In summary, we have formulated the joint day-ahead power pro-
curement and load scheduling problem as a stochastic optimization
problem (4) and proposed an SADMM algorithm that can effective-
ly mitigate the effects of the uncertainties caused by RESs and un-
controllable random demands. The theoretical convergence of the
proposed SADMM has been analyzed. The numerical results have
shown that SADMM can yield promising performance for the con-
sidered problem. For future research, we will conduct more numer-
ical tests with a larger number of customers. Moreover, we wish to
extend the day-ahead framework to multi-timescale power procure-
ment and load scheduling.
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