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ABSTRACT

Unraveling power spectra mixtures and finding the directions of

the constituent sources can enable effective spatial occupancy pre-

diction by location-dependent combining of the recovered source

power spectra; and it is also useful for primary interference avoid-

ance. Such unmixing and direction-finding is a challenging leap

beyond ordinary ‘aggregate’ spectrum sensing. This paper presents

a promising new method for blind (power) spectra separation and

emitter direction finding using a network of cognitive radios. Each

radio has a pair of antennas, and the baselines of different radios

are aligned (e.g., using a compass), in a configuration reminiscent

of classical spatial correlation-based ESPRIT. Unlike classical ES-

PRIT, array geometry is exploited here in the temporal correlation

domain to come up with a simple and effective blind spectra sepa-

ration and direction finding solution with guaranteed identifiability

and robustness to noise. A notable feature is that the different radios

need not be synchronized, as they do in spatial ESPRIT.

Index Terms— Blind Power Spectra Separation, Direction-of-

Arrival Estimation, Spectrum Sensing, Cognitive Radio, ESPRIT

1. INTRODUCTION

Cognitive radio can help resolve the problem of spectrum scarcity,

by judiciously exploring under-utilized frequency bands and exploit-

ing transmission opportunities, while respecting the licensed pri-

mary users. Spectrum sensing is the first step towards this end, as

it enables the situational awareness needed for intelligent spectrum

reuse.

The spectrum sensing task has been formulated in various ways.

Most references to date treat the task as binary hypothesis testing for

each frequency bin; see [1] for a recent comprehensive survey of this

type of approaches. Broadband sensing has also been considered, in

an attempt to exploit pertinent sparsity and correlation properties,

e.g., [2–4]. Here we consider taking the sensing task to the next

step, from aggregate power spectrum sensing to power spectra sepa-

ration and localization of spectrally overlapping transmissions from

multiple sources. Knowing the individual power spectrum and the

direction of each source is useful for a number of reasons. For in-

stance, combining the power spectra ‘atoms’ with direction informa-

tion allows spatial power spectrum interpolation, as well as limiting

interference to licensed users - in addition to security, integrity, and

signal intelligence implications. The power spectra separation and

direction finding problem is also challenging - which of course just

adds to its research appeal. Specifically, as no cooperation or control
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signaling between primary and cognitive radio (CR) systems can be

assumed, the separation process has to be implemented blindly at the

CR sensors.

A recent article [5] has formulated a variation of the aforemen-

tioned problem, assuming a pure path loss model without shadowing

or fading, as non-negative matrix factorization (NMF). NMF does

not necessarily yield the true underlying power spectra, as the so-

lution to NMF is not guaranteed to be unique. Furthermore, NMF

is affected by measurement noise, and its solution entails significant

computational complexity.

In this paper, our primary goal is to provide a theoretically sound

formulation, as well as a simple and practically implementable solu-

tion to the joint blind spectra separation and emitter direction find-

ing problem for cognitive radio applications. Our solution employs

a network of cognitive radios. Each radio has a pair of antennas, and

the baselines of different radios are aligned (e.g., using a compass),

in a configuration that is similar to classical spatial correlation-based

ESPRIT, as used for Direction Of Arrival (DOA) estimation. Unlike

classical ESPRIT, we do not need synchronization across the big

virtual subarray, i.e., the two down-conversion chains correspond-

ing to the receive antennas of each cognitive radio should be syn-

chronized, but different radios need not be synchronized. Instead

of working with the spatial correlation of the virtual subarray, here

the special array geometry is exploited in the temporal correlation

domain to come up with a simple and effective blind spectra sepa-

ration and direction finding solution with guaranteed identifiability

and robustness to noise. As ESPRIT reduces to an eigenvalue prob-

lem, it avoids overly complicated computations. Together with the

ability to work without network-wide synchronization, this renders

the overall solution practically feasible in commodity software ra-

dios, for example. Finally, the method includes a projection step that

mitigates the influence of additive white measurement noise, thus

yielding more accurate estimation results. Simulations illustrate the

effectiveness of the approach for both blind power spectra separation

and emitter DOA estimation.

2. SETUP AND SIGNAL MODEL

Consider a scenario where there are K primary or secondary trans-

mitters in the far field of a network of N cognitive radio receivers,

each equipped with two receive antennas and down-conversion

chains. Let xk(t) ∈ C, for t = 0, 1, . . ., denote the k-th trans-

mitted signal. We assume that xk(t) is wide-sense stationary, and
its bandwidth is relatively narrow compared to its carrier frequency

(e.g., 20 MHz in the 2-5 GHz band; otherwise we may apply our

approach to sub-bands). Without loss of generality, we also assume

that E{|xk(t)|
2} = 1, for k = 1, . . . ,K. The two received signals
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Fig. 1: The considered scenario when (N,K) = (2, 2).

at cognitive radio n can be expressed as

yn(t) = ΦnAnx(t) + υn(t), t = 0, 1, 2, ..., (1)

where x(t) = [ x1(t), . . . , xK(t) ]T denotes the vector of trans-

mitted signals, yn(t) = [ yn,1(t), yn,2(t) ]T denotes the two

received signals at the antennas of cognitive radio n, υn(t) =
[ υn,1(t), υn,2(t) ]

T denotes the corresponding noise vector, An =
Diag( an,1, . . . , an,K ) is a diagonal matrix whose kth diagonal

element an,k contains the channel response from transmitter k to

receiver n, and Φn is a matrix which is generally related to the

geometry of the antenna placement and the DOA of the received

wavefronts at sensor n. Here we consider the case where each cog-
nitive radio receiver employs a pair of dipoles or monopoles, with

fixed common spacing. The Universal Software Radio Peripheral

(USRP) by Ettus Research is a popular software radio platform that

fits this bill, for example. Consequently, we have [6]

Φn =

[

1, . . . , 1
ejφn,1 , . . . , ejφn,K

]

,

where φn,k = −2πd sin(θn,k)/λ, θn,k ∈ [ − π, π ] is the DOA of

source k at sensor n, λ is the wavelength corresponding to the car-

rier frequency, and d denotes the distance between the two receive

antennas. We further assume that the baselines of the receiving ra-

dios are aligned (e.g., using a compass) to face in the same direction,

such that

θn,k = θk, k = 1, . . . ,K,

which leads to φn,k = φk. The scenario we just described is illus-

trated in Fig. 1. Assuming that {yn(t)}n=1,...,N and (a perhaps ten-

tative estimate of) K are available, our interest lies in blindly sepa-

rating theK underlying power spectra and estimating {θ1, . . . , θK}.
It is worth noting from early on that our solution will not require syn-

chronization between theN different receiving radios, and it will not

involve communicating the raw received signals to the fusion center

- only reduced temporal auto- and cross-correlation summaries need

to be communicated, which is of course advantageous from a control

signaling overhead point of view.

3. PROPOSED APPROACH

In this section, we propose a problem formulation following the de-

scribed signal model. As we will see, our formulation makes use

of the signal structure induced by the special antenna geometry, and

leads to an algebraically simple solution to the simultaneous blind

power spectra separation and DOA estimation problem.

3.1. Problem Formulation

To get started, let us define

cn,q(ℓ) = E
{

yn,1(t)y
∗
n,q(t− ℓ)

}

, q = 1, 2. (2)

In words, cn,q(ℓ) denotes the ℓ-lag auto/cross-correlation between

the received signals at the first and the qth antennas of cognitive

radio receiver (henceforth called sensor for brevity) n. Notice that by
our signal model, we have yn,q(t) =

∑K

k=1 an,ke
j(q−1)φkxk(t) +

υn,q(t) for q = 1, 2. Hence, by assuming that the the transmitted
signals are (naturally) mutually uncorrelated, and that the noises are

also uncorrelated to the source signals, one can see that for q = 1, 2,

cn,q(ℓ) =

K
∑

k=1

|an,k|
2ej(1−q)φkrk(ℓ) + E{υn,1(t)υ

∗
n,q(t− ℓ)},

where rk(ℓ) = E{xk(t)x
∗
k(t− ℓ)} is the autocorrelation of xk(t) at

time lag ℓ. Assume that the noise υn,q(t) at each antenna of sensor
n is white Gaussian, both temporally and spatially, with zero mean

and variance σ2
n, i.e., υn,q(t) ∼ N (0, σ2

n) for q = 1, 2. Then, when
q = 1, we have

E{υn,1(t)υ
∗
n,1(t− ℓ)} = σ2

nδ(ℓ), (3)

where δ(ℓ) denotes the Kronecker delta

δ(ℓ) =

{

1, ℓ = 0,

0, otherwise.
(4)

When q = 2, we have

E{υn,1(t)υ
∗
n,q(t− ℓ)} = 0, ∀ℓ, (5)

as the noises are uncorrelated to each other. Thus, we can compactly

express cn,q(ℓ) as

cn,q(ℓ) =

{

∑K

k=1 |an,k|
2rk(ℓ) + σ2

nδ(ℓ), q = 1,
∑K

k=1 |an,k|
2e−jφkrk(ℓ), q = 2.

(6)

Now, consider the discrete-time Fourier transform (DTFT) of

{cn,q(ℓ)}
∞
ℓ=−∞. By the linearity of DTFT and the basic transform

pair δ(ℓ)↔ 1, we have

Cn,q(ω) =
∞
∑

ℓ=−∞

cn,q(ℓ)e
−jωℓ

=

{

∑K

k=1 |an,k|
2Sk(ω) + σ2

n, q = 1,
∑K

k=1 |an,k|
2e−jφkSk(ω), q = 2.

(7)

where ω ∈ [−π, π], and Sk(ω) =
∑∞

ℓ=−∞ rk(ℓ)e
−jωℓ denotes

the power spectrum of source k at frequency ω. We discretize the

frequency axis to NF samples and denote

Gn,q(f) = Cn,q

(

2πf

NF

)

,

where f = 0, 1, . . . , NF − 1. Notice that in practice such Gn,q(f)
can be computed by applying the discrete Fourier transform (DFT)

to {cn,q(ℓ)}ℓ∈L, where L denotes the index set of available time

lags. Given the obtained Gn,q(f), we construct Gq ∈ R
N×NF for

q = 1, 2 such that

[Gq]n,f+1 = Gn,q(f), f = 0, 1, . . . , NF − 1. (8)
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We can compactly expressGq as

G1 = BS
T + η1

T , (9a)

G2 = BDS
T , (9b)

where B = A ◦ A∗, “◦” denotes the Hadamard product, A ∈
C

N×K such that [A]n,k = an,k, D = Diag(e−jφ1 , . . . , e−jφK )
contains the desired DOA parameters in its diagonal elements,

S = [ s1, . . . , sK ], sk = [Sk(0), . . . , Sk(NF − 1)]T denotes

the discretized power spectrum of transmitter k, which we also

aim to estimate, 1 is an all-one vector with proper length, and

η = [σ2
1 , . . . , σ

2
N ]T contains all the sensor noise variances.

To get rid of the noise term in (9a), let P⊥ = I − (1/NF )11
T

be the orthogonal complement projector of 1 and obtain

G̃q = GqP
⊥, q = 1, 2.

Then, for q = 1 we will subsequently have G1P
⊥ = BSTP⊥ +

η(P⊥1)T , where the second term is zero (when working with exact

correlation matrices). Hence, at this point, our problem boils down

to using G̃1 = BSTP⊥ and G̃2 = BDSTP⊥ to estimate S and

θ1, . . . , θK .

3.2. Solution via Rotational Invariance

We propose to employ the estimation of signal parameters via ro-

tational invariance technique (ESPRIT) to estimate D and S. ES-

PRIT is appealing in our context due to its ability to identify the

sought DOA parameters and to separate the atomic power spectra,

but also for simplicity and suitability for practical implementation.

For identifiability, we assume that

(A1) rank(B) = K.

(A2) θ1,. . . ,θK are distinct.

(A3) rank ([S,1]) = K + 1.

(A1) impliesN ≥ K, so that the number of (dual-channel) receivers

should be larger than or equal to the number of active transmitters.

For N ≥ K, rank(B) = K almost surely if A is drawn from

a jointly continuous distribution, such as, for example, when A is

modeled as i.i.d. circularly symmetric complex Gaussian, in which

case B is i.i.d. Chi-square distributed [7, 8]. (A3) says that the un-
derlying atomic power spectra are all linearly independent, and they

cannot be linearly combined to yield a white noise-like frequency-

flat power spectrum (because then white measurement noise cannot

be separated from the sought spectra).

For a quick retrospective of ESPRIT, we first construct G̃ =
[G̃T

1 , G̃
T
2 ]

T . Then, let U ∈ C
2N×K denote the first K left sin-

gular vectors of G̃. Under (A1)-(A3), it is not difficult to see that
rank(D) = rank(STP⊥) = K and thus

R(U) = R

([

B

BD

])

. (10)

Let U1 and U2 contain the first and second N rows of U , respec-

tively. One can see from Eq. (10) that there exists a full-rank square

matrixQ ∈ C
K×K such that

U1 = BQ, (11a)

U2 = U1Ψ, (11b)

Ψ = Q
−1

DQ. (11c)

Solving (11b) forΨ in the least squares sense1 yields

Ψ̂ = U
†
1U2.

From (11c), the estimated D̂ and Q̂ can be obtained by eigen-

decomposition of Ψ̂, which is unique under (A2). Thus B̂ can be

subsequently estimated. After obtaining B̂ and D̂, Ŝ can be easily

found using (9b), i.e.,

Ŝ =
(

D̂
−1

B̂
†
G2

)T

,

asG2 is noise-free in theory.

Remark 1 We would like to emphasize that the proposed approach

does not require synchronization between the different radio re-

ceivers; only the two down-conversion chains of each individual re-

ceiver are assumed to be synchronized. This stems from the fact that

the rows ofC1 andC2 are only related to the auto/cross-correlations

of pairs of signals received at the same radio. We will in fact demon-

strate that this is a key benefit of our temporal correlation-domain

ESPRIT approach, relative to using spatial correlation-domain ES-

PRIT, which hinges upon accurate network-wide synchronization -

which is very hard, if at all possible to maintain in practice.

Remark 2 By noticing that both B and S are non-negative, a sim-

ple NMF criterion can be considered for blind separation of the

source spectra, i.e.,

Ŝ = arg min
S≥0,B≥0

∥

∥

∥
G1 −BS

T
∥

∥

∥

2

F
, (12)

where the inequalities are element-wise. A similar NMF idea was

first proposed in [5] to localize the sources and estimate their power

spectra simultaneously, albeit localization then hinges on a restric-

tive path loss-only model for B with a known exponent, which is

applicable in line-of-sight situations. The advantage of this formu-

lation is that each receiver needs to use only one antenna and as-

sociated down-conversion chain. The drawbacks are that NMF is

not unique in general [9, 10], so localization and spectra separation

may fail to work; and the computational complexity of NMF (an

NP-hard problem) is much higher than that of eigen-decomposition-

based ESPRIT. For our proposed approach, on the other hand, due

to uniqueness of the ESPRIT solution, the power spectra are guaran-

teed to be recovered under our working assumptions if the Gq’s are

perfectly estimated.

4. SIMULATIONS

In this section, we simulate a scenario with (N,K) = (3, 2).
In each trial of our simulation, the transmitted signals are gen-

erated as passband-filtered circularly symmetric white Gaussian

processes. Specifically, we partition the considered frequency band

into twelve channels and randomly choose four channels for parallel

transmission by each transmitter (the spectra of the two transmit-

ters overlap with positive probability); in each active channel, the

transmitted power spectrum is sinc-shaped with a random positive

scaling factor. Such a setup is used to simulate sparse frequency

band usage by the primary users. The two transmitted wavefronts

are set to arrive at the receiver antenna doublets from directions

θ1 = −18◦ and θ2 = 5◦. In each trial, the entries of the channel

1Total least squares may be used instead.
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matrix A are drawn from the i.i.d. circularly symmetric complex

Gaussian distribution. We assume that the noise variances at all

receiving antennas are identical, i.e., σ2
1 = . . . = σ2

N = σ2. The

signal-to-noise ratio (SNR) is subsequently defined as SNR =
E
{

‖Ax(t)‖22/σ
2
}

. In all the simulations, NF = 256 frequency

bins and L = {−255,−254, . . . , 254, 255} are used.
Fig. 2 shows the separated atomic power spectra for one ran-

domly picked instance with sample size T = 2 × 105 and SNR=
0dB. As a baseline for comparison, we also present the result using
the NMF criterion in the last section; the multiplicative update algo-

rithm [11] is employed to tackle the optimization problem in (12).

One can see that even in this low SNR scenario, the proposed ap-

proach can well separate the constituent spectra, and gives a clear

indication of the usage of the considered band. On the other hand,

one can see that NMF is not as promising as the proposed method in

terms of estimating the underlying power spectra in this scenario.

In Fig. 3, the mean-square-errors (MSEs) of the estimated power

spectra Ŝ obtained by NMF and the proposed temporal correlation-

domain ESPRIT algorithms are presented; each result is averaged

over 100 trials. One can see that for both T = 5 × 104 and

T = 2 × 105 cases, the proposed approach yields lower MSEs

than NMF. Also, with larger sample size, the proposed approach

exhibits a lower MSE floor. Particularly, when T = 2 × 105, the
proposed approach exhibits more than 10dB lower MSE than that

of NMF when SNR ≥ 0 dB. This can be explained by the fact that
larger sample size results in more accurate estimation ofC1 andC2,

which leads to better estimation of S.

Fig. 4 shows root mean-square-error (RMSE) of the DOAs es-

timated using the proposed temporal correlation-domain ESPRIT

approach, and the classical spatial correlation-domain ESPRIT ap-

proach (e.g., see [12]). One can verify that, if the sensors are

synchronized, the spatial correlation-domain ESPRIT algorithm ex-

hibits excellent RMSE performance, while the proposed temporal

correlation-domain one works reasonably well, but it cannot com-

pete with the classical method in terms of DOA estimation accuracy.

The situation is reversed, and the proposed method shines exactly

when there is a random timing mismatch between the different radio

receivers, in which case classical spatial covariance-domain ES-

PRIT fails completely, whereas our method is virtually unaffected,

and maintains RMSE lower than 0.1 degree when SNR ≥ 20 dB.

This corroborates our earlier claim in Remark 1.

5. CONCLUSION

In this paper, we have proposed an approach for blindly separating

the power spectra of different co-channel transmitters and estimat-

ing the corresponding DOAs using a network of dual-antenna cog-

nitive radios with aligned baselines. The temporal auto- and cross-

correlations of pairs of signals at each cognitive radio receiver are

used together with this special receiving array geometry to formulate

temporal correlation-domain ESPRIT problem that yields the under-

lying atomic power spectra and the DOAs of the active transmitters.

A notable feature is that the different radios need not be synchro-

nized, as they do in spatial ESPRIT. The overall solution is simple

and it provides identifiability guarantees, unlike related formulations

based on NMF. The results are useful for spatial occupancy predic-

tion by location-dependent combining of the recovered source power

spectra; primary interference avoidance; and secondary network in-

tegrity, security, and signal intelligence applications. Pertinent ex-

tensions of these ideas will be presented in a forthcoming journal

version.
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