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ABSTRACT

In this paper, transmit beamformer design for single group
multicast scenario is considered. The problem is solved in
discrete form where the beamformer phase and amplitude val-
ues are selected from finite discrete sets. Original optimiza-
tion problem is converted to a linear form by introducing new
variables. The solution of the equivalent optimization prob-
lem is always feasible as long as the total power is above a
certain value. The problem in its linear form is guaranteed
to return optimum solution. Proposed approach is very effec-
tive and the number of bits can be increased to obtain close to
optimum continuous phase and amplitude beamformers.

Index Terms— Transmit beamformer, discrete beam-
former, mixed integer linear programming

1. INTRODUCTION

Transmit beamformer design has found widespread appli-
cations in different fields including communications, radar,
sonar, etc. In this paper, “single group multicast” beam-
forming scenario is considered where the transmitter trans-
mits the same information to several users [1].

Transmit beamforming problem is usually investigated in
continuous case where the beamformer has continuous am-
plitude and phase. In max-min fair beamforming design, the
goal is to maximize the minimum received SNR over all users.
This problem is NP hard, a near-optimal solution is usually
found by semidefinite relaxation [1], [2], [3]. It is known that
convex optimization with semidefinite relaxation works well
but does not guarantee rank one and hence optimum solution
in general [1]. When the rank condition is not satisfied, ran-
domization is used to obtain an improved result [2].

The design of discrete phase-only beamformer is investi-
gated in [4], [5], [6]. Unfortunately previous works only pro-
pose suboptimum solutions. In [7], optimum discrete phase-
only transmit beamformer design is presented. In this paper,
this work is extended to optimum discrete phase-amplitude
beamformer (DPAB). The problem is considered for the max-
min fair approach. Optimum solution is obtained by applying
a number of nontrivial transformations to the original opti-
mization problem. Fortunately, discrete case allows one to
generate known finite set and vectors for discrete phase and
amplitudes. Optimization problem is converted to a linear

form by introducing some additional variables. In this pro-
cess, multiplication of optimization variables is converted to
a linear addition expression in terms of new optimization vari-
ables. The performance of the proposed solution is good even
for small number of quantization levels.

2. DISCRETE TRANSMIT BEAMFORMER DESIGN
Consider a base station equipped withM transmit antennas to
transmit a common signal to N receivers, each having a sin-
gle antenna. Assume that the antennas are identical. Trans-
mitted signal is narrowband and propagation is nondispersive.
The transmit beamforming “max-min” problem is to choose
beamforming weight vector, w, in order to maximize the min-
imum power transmitted to any user. When the phase angles
and the amplitudes of the beamformer are selected from a dis-
crete set, it is possible to find an optimum solution for the
transmit beamformer. The discrete beamformer vector can be
written as w = [α1e

jψ1 α2e
jψ2 ... αMe

jψM ]T where αi is
the positive discrete amplitude and ψi is the discrete phase
angle. Each antenna has a rated power and cannot transmit
beyond this power. Considering Panmax as the maximum an-
tenna power and Ptot as the total power, discrete max-min
problem can be written as follows,

max
ψi,αi

t

s.t. wHRkw ≥ tγkσ2
k, k = 1, ..., N (1)

|wi|2 ≤ Panmax
i = 1, ...,M (2)

wHw ≤ Ptot (3)

ψi ∈ {0,∆θ, 2∆θ, ..., (2n − 1)∆θ}, ∆θ =
360◦

2n
(4)

αi ∈ {∆a, 2∆a, ..., 2
m∆a}, ∆a =

√
Panmax

2m
(5)

where γk is the power proportion for the kth target and Rk =
hkh

H
k by assuming full channel state information (CSI). n

and m are the number of bits to represent the discrete phase
and amplitude values respectively. ∆θ and ∆a are the discrete
step size for phase and amplitude respectively. Using the fact
that Rk is a Hermitian symmetric matrix and trigonometric
identity, the optimization problem can be written as,
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max
ψi,αi,βi,p,µi,p

t

s.t.

M−1∑
i=1

M∑
p=i+1

2µi,p(cos(∠Rk(i, p))cosβi,p

−sin(∠Rk(i, p))sinβi,p)

+

M∑
i=1

α2
i ≥ tγkσ2

k, k = 1, ..., N (6)

M∑
i=1

α2
i ≤ Ptot (7)

ψi ∈ {0,∆θ, 2∆θ, ...(2n − 1)∆θ}, ∆θ =
360◦

2n
(8)

αi ∈ {∆a, 2∆a, ..., 2
m∆a}, ∆a =

√
Panmax

2m
(9)

βi,p = −ψi + ψp (10)
µi,p = αiαp, i = 1, 2, ...,M − 1, p = i+ 1, ...,M (11)

The problem setting described for DPAB in (6-11) is not con-
vex. Conversion of this problem to a linear form is presented
in the next section.

3. DISCRETE OPTIMIZATION IN LINEAR FORM

In this part, DPAB expressions in (6), (7), (10) and (11) are
converted into linear expressions of optimization variables.

Let the first and second parts of the left hand side of the
inequality in (6) be represented as A and B respectively. The
known vectors c and s are defined. c and s are composed of
cosβi,p and sinβi,p terms including all the βi,p values in the
finite discrete set, i.e.,

c = [ cos(−(2n − 1) ·∆θ) ... cos((2n − 1) ·∆θ)] (12)
s = [ sin(−(2n − 1) ·∆θ) ... sin((2n − 1) ·∆θ)] (13)

In order to access each summation term in A, ui,p vectors
which are all zero except a single element are defined. ui,p’s
are the new variables of optimization and they are special or-
dered sets of type 1 (SOS1) vectors which are common in
integer optimization [8].

ui,p is a (2n+1 − 1) × 1 vector and carries both phase
and amplitude information of the beamformer vector. The
nonzero element index in ui,p stands for the phase angle dif-
ference, βi,p. Since values of βi,p range from−(2n−1)∆θ to
(2n−1)∆θ, the index of the ui,p vector starts from−(2n−1)
and end at (2n − 1). The index value of the nonzero element
is βi,p

∆θ . The element amplitude is αiαp

∆2
a

.
A in (6) can be expressed in terms of ui,p as,

A =

M−1∑
i=1

M∑
p=i+1

2∆2
a(cos(∠Rk(i, p))c

−sin(∠Rk(i, p))s) · ui,p (14)

The phase and amplitude relationship between ui,p vec-
tors should be established and used during the optimization.
Such relationships can be established over some vectors, vi.
2n×1 vector, vi, carries the phase and amplitude information
of the beamformer vector. They are SOS1 vectors similar to
ui,p. The index value of the nonzero element of vi stands for
ψi. Since values of ψi range from 0 to (2n − 1)∆θ, the index
of vi vector starts from 0 and end at (2n−1). The index value
of the nonzero element is ψi

∆θ . The element amplitude is αi

∆a
.

ui,p and vi are SOS1 vectors carrying different forms of
phase and amplitude information. In order to convert the non-
linear optimization problem into a linear one, we need vec-
tors which carry only the phase and amplitude information.
In other words, phase and amplitude information on variable
vectors should be separated. This can be achieved by defining
SOS1 operators T1, T2 and T3 respectively. T1 generates the
phase coded “binary” SOS1 vectors u′i,p and v′i from ui,p
and vi respectively. T2 and T3 generate v′′i and u′′i,p binary
SOS1 vectors respectively. These two vectors have only the
coded amplitude information and are described in the follow-
ing parts.

The function of T1{.} operator is the normalization, i.e.,

v′i = T1{vi} = T1{[ 0 ...
αi
∆a

... 0 ]T }

=
vi∆a

αi
= [ 0 ... 1 ... 0 ]T (15)

and therefore it generates only phase coded vector v′i. T1

operates similarly on ui,p.
The equation in (10) can now be written in terms of new

variables v′i and u′i,p respectively. In order to do this, (10) is
first normalized with ∆θ = 360◦

2n . Let d = [ 0 1 2 ... (2n−1) ],
and e = [ −(2n − 1) − (2n − 2) ... (2n − 1) ] be known row
vectors of integers. After normalization, (10) can be written
as,

d · (−v′i + v′p) = e · u′i,p (16)

To convert (11) and B into the desired form, multiplica-
tion of two variables is converted to addition through a map-
ping operation. Let αi and αp be two amplitude values in
multiplication, i.e, αi · αp = µi,p, where αi

∆a
, αp

∆a
and µi,p

∆2
a

belong to positive integers, i.e., αi

∆a
,
αp

∆a
,
µi,p

∆2
a
∈ Z+. αi

∆a
and

αp

∆a
belong to a finite discrete set, i.e., αi

∆a
,
αp

∆a
∈ S where

S = {1, 2, 3, ..., 2m} for m bits as can be seen in (5). There
are 2m +

(
2m

2

)
multiplication couples since multiplication is

commutative. When the multiplication of αi

∆a
and αp

∆a
in S is

considered, the discrete set of couples can be given as,

P = {1 · 1, 1 · 2, ... , 1 · 2m, 2 · 2, 2 · 3, ... , 2 · 2m,
3 · 3, ... , 2m · 2m} (17)

Let q be a row vector whose elements are unique and ordered
values of multiplication results corresponding to couples in
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P , i.e.,

q = [ 1 2 3 ... 2m · 2m ] (18)

The values in the discrete set S should be coded by some gi
in order to generate a linear expression and one-to-one map-
ping between multiplication and addition. This can be easily
done by using logarithm operation since αi · αp = µi,p can
be equivalently written as logαi + logαp = logµi,p. Note
that logarithm does not solve the ultimate problem alone since
logαi is a nonlinear function of the variable αi. Let g be a
vector whose elements are the logarithm of the elements in
S, i.e., g = [ g1 g2 ... g2m ] where gi = logi. In a similar
manner, the logarithm of the values in q are used to obtain
h as h = [ h1 h2 ... ] where hi = logqi. In order to select
or access each element of g and h, we need to define binary
SOS1 vectors v′′i and u′′i,p from vi and ui,p respectively. This
is possible by defining T2{.} and T3{.} operators. These two
operators map a SOS1 vector into a binary SOS1 vector. Note
that these operators generate SOS1 vectors which carry only
the amplitude information.

T2{} operates on vi and T3{} operates on ui,p only.
T2{vi} sums the elements of vi and results a binary vector
of 2m × 1 size with a nonzero element index being equal to
the summed value.

T3{ui,p} takes the nonzero element value in ui,p and finds
its index value in q. It generates a binary vector whose only
nonzero value is at this index. u′′i,p = T3{ui,p} is a column
vector and has the same length as the q vector.

Now consider the multiplication,
αi
∆a
· αp

∆a
=
µi,p
∆2
a

(19)

which is equivalent to

log
αi
∆a

+ log
αp
∆a

= log
µi,p
∆2
a

(20)

The equation in (19) can be written in terms of known vectors,
g, h, and binary SOS1 vectors v′′i and u′′i,p as,

g · (v′′i + v′′p) = h · u′′i,p (21)

As a result (19) is converted into a linear additive expression
of optimization variables, v′′i and u′′i,p.

In the following part, B part of the inequality in (6) is
converted to a linear form. Note that this term is the same as
the left hand side of the inequality in (7).

B is the sum of squared amplitudes of beamformer el-
ements. Define a row vector r which is composed of the
squared values in S, i.e.,

r = [ 12 22 ... (2m)2 ] (22)

B can be written as,

B = ∆2
ar ·

M∑
i=1

v′′i (23)

Now the expressions in (6), (7), (10) and (11) are con-
verted to linear expressions of optimization variables, vi,
ui,p, v′i, u

′
i,p, v′′i and u′′i,p in (14), (23), (16) and (21) respec-

tively. All of the variables in these expressions are integer
variables. Furthermore v′i, v

′′
i , u′i,p and u′′i,p are binary SOS1

vectors. The final variable of optimization, t, corresponds
to the min{SNRk

γk
} and hence it is real, i.e., t ∈ R. There-

fore the problem can be solved using mixed integer linear
programming [9]. The new optimization problem is written
as,

max
vi,ui,p,v′i,u

′
i,p,v

′′
i ,u
′′
i,p

t

s.t.

M−1∑
i=1

M∑
p=i+1

2∆2
a(cos(∠Rk(i, p))c

−sin(∠Rk(i, p))s) · ui,p

+∆2
ar ·

M∑
i=1

v′′i ≥ tγkσ2
k k = 1, ..., N (24)

∆2
ar ·

M∑
i=1

v′′i ≤ Ptot (25)

d · (−v′i + v′p) = e · u′i,p
i = 1, 2, ...,M − 1, p = i+ 1, ...,M (26)

g · (v′′i + v′′p) = h · u′′i,p (27)

T1{ui,p} = u′i,p (28)

T3{ui,p} = u′′i,p (29)

T1{vi} = v′i i = 1, 2, ...,M (30)
T2{vi} = v′′i (31)

where vi and ui,p are vectors of special ordered sets of type
1 and known vectors c, s, r, d, e, q and h are given as in
the previous parts. The discrete optimization problem in (24-
31) is always feasible as long as Ptot ≥ M∆2

a and optimum
solution is guaranteed for DPAB. Note that the above prob-
lem is solved using mixed integer linear programming with
branch and cut procedure which is known to return the global
optimum [10], [11], [12], [13].

The T1, T2 and T3 operators can be easily implemented
in integer programming. For example, T1 can be realized by
using the following constraints, i.e.,

vi + v′i, ui,p + u′i,p ∈ SOS1 (32)

v′i, u
′
i,p ∈ SOS1b (33)

where SOS1b stands for binary SOS1.
Operator T2 can be realized by using the following con-

straints, i.e.,

[ 1 1 ... 1 ]vi = sv′′i (34)
v′′i ∈ SOS1b (35)
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where s is a row vector composed of the elements in S, i.e.,
s = [ 1 2 3 ... 2m ]. Similarly T3 can be realized by using the
following constraints, i.e.,

[ 1 1 ... 1 ]ui,p = qu′′i,p (36)

u′′i,p ∈ SOS1b (37)

Once the solution for vi’s are found, the phase angles and
the amplitudes of the beamformer vector are obtained as,

ψi = fTψ v
′
i, αi = ∆af

T
α vi, i = 1, ...,M (38)

where fψ = [ 0 ∆θ ... (2n − 1)∆θ ]T and fα = [ 1 1 ... 1 ]T

respectively.
4. SIMULATIONS

In this paper, “Gurobi” [9] which is an efficient mixed integer
linear programming solver is used by employing branch and
cut strategy.

In the first experiment, a uniform linear array (ULA) with
M = 4 elements and N = 4 users are used. m = 2 and
n = 3 bits are used for the amplitude and phase respectively.
The user locations are varied randomly for 100 trials. Fig. 1
shows the results obtained with the proposed DPAB method
and brute force search approach. As it is seen from the figure
both return the same solution as expected since DPAB is the
optimum method. While worst case complexity of the mixed
integer linear programming is exponential, usually much bet-
ter efficiency is achieved since the algorithm finds the optimal
solution by pruning and linear programming which is known
to have polynomial complexity [10], [11], [13], [14]. Table
1 shows the computational times for DPAB and brute force
over an average of 10 trials for each case. As it is seen from
this table, DPAB is twofold efficient than brute force search
for these experiments. As the dimension of the problem in-
creases DPAB becomes more efficient.

In the second experiment, DPAB is compared with its
continuous counterpart continuous phase amplitude beam-
former (CPAB) and convex optimization with randomization
(CPAB+). There are three targets. The first and second tar-
gets are fixed at (60◦, 90◦), (100◦, 90◦) respectively. The
third target is variable. Its elevation angle is fixed at 90◦

degrees and azimuth angle is varied between 0◦ to 180◦ de-
grees. γk coefficients are selected as γ1 = 1, γ2 = 2 and
γ3 = 4 respectively. Panmax

= 1W and Ptot = 2W are
used. n = 4 and m = 2 bits are selected. The comparison for
three techniques is given in Fig. 2. CPAB cannot return rank
one solution for certain azimuth angles, performance degra-
dation is large. Randomization, and hence CPAB+, improves
the solution significantly in such cases [2]. However there
are still certain angular sectors such as between 140◦ and
160◦ where randomization is insufficient. The performance
of DPAB is consistent and good for all azimuth angles. The
difference in minimum transmit powers is small even for
n = 4 and m = 2 selection. Therefore DPAB can be seen as
an effective solution for any number of receiver and receiver
locations.
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Fig. 1. Optimization parameter “t” for 100 channel realiza-
tions for DPAB and brute force search.

Table 1. Computational time of DPAB and brute force search
Ptot = 2Panmax Ptot = 4Panmax

m = 2 m = 0

n = 3 n = 4 n = 4 n = 5

DPAB 10.44 s 165.25 s 1.93 s 25.08 s
BRUTE FORCE 24.40 s 382.15 s 2.61 s 40.98 s

5. CONCLUSION

Discrete amplitude and phase transmit beamformer design
problem is investigated. It is shown that optimum solution
is guaranteed as long as Ptot ≥ M∆2

a. This result is made
possible by converting the optimization problem into a linear
set of equality and inequality expressions. This conversion is
achieved by defining new optimization variables and replac-
ing multiplication with addition. Discrete solutions perform
very well even with small number of quantization bits. The
transmit power and beampatterns approach to the continuous
optimum beamformers. Practical radar, sonar and communi-
cations systems have discrete phase and amplitude hardware
and hence proposed solution is a good fit for practical systems
in general.
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Fig. 2. Optimization parameter “t” versus azimuth angle of
the third target for CPAB, CPAB+ and DPAB.
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