
SMOOTH TIME-FREQUENCY ESTIMATION USING COVARIANCE FITTING
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ABSTRACT
In this paper, we introduce a time-frequency spectral estima-
tor for smooth spectra, allowing for irregularly sampled mea-
surements. A non-parametric representation of the time de-
pendent (TD) covariance matrix is formed by assuming that
the spectrum is piecewise linear. Using this representation,
the time-frequency spectrum is then estimated by solving a
convex covariance fitting problem, which also, as a byprod-
uct, provides an enhanced estimation of the TD covariance
matrix. Numerical examples using simulated non-stationary
processes show the preferable performance of the proposed
method as compared to the classical Wigner-Ville distribution
and a smoothed spectrogram.

1. INTRODUCTION

Estimating the spectral content of time-varying, non-stationary,
and possibly non-uniformly sampled sequences is a topic
common for a wide range of fields, and one that has attracted
notable attention in the recent decades [1–8]. Much of the
recent efforts have focused on the estimation of the various
kinds of sparse spectra, with the estimation of smooth spectra
attracting notably less attention (see, e.g., [9] and the ref-
erences therein). Often, smooth spectra are modeled using
ARMA models, which allow for reliable estimates given rea-
sonable a priori information of the model orders, although
it is a non-trivial problem to find decent estimates of such
model orders. Recently, there has also been efforts to for-
mulate alternative smooth spectral estimators, such as the
so-called LIMES method introduced in [9], wherein a piece-
wise smooth non-parametric spectral estimator was intro-
duced. In spite of the frequent reoccurrence of non-uniformly
sampled data sets, most of the available methods assume
uniformly sampled data sets, and only limited work has been
done on finding the time-frequency (TF) distribution of non-
uniformly sampled measurements, with the notably exception
of [10], wherein a method is presented that uses a set of signal
dependent kernels, based on the minimum variance filter for-
mulation, allowing for irregularly sampled measurement. In
this work, we seek to alleviate this shortcoming by extending
the aforementioned LIMES estimator [9] to the case of time
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Fig. 1: An example of the assumed grid structure. The left
plot shows the division of the TF plane into rectangles where
any point inside the rectangle is assumed to lie on the plane
defined by the lower three corners. In the right figure, an
example of a TF distribution is shown with the corresponding
grid structure.

dependent and non-uniformly sampled data sets. Numerical
examples illustrates the achievable performance of the pro-
posed estimator as compared to the classical Wigner-Ville
distribution (WVD) and a smoothed spectrogram, clearly in-
dicating the preferable performance of the proposed method.
The remainder of the paper is organized as follows: in the
next section, we present the data model used to form the TF
distribution, followed in Section 3 by the derivation of the
proposed estimator. Finally, Section 4 examines the achiev-
able performance of the proposed estimator.

2. DATA MODEL

Consider a real-valued signal, y(t), where t = t0, . . . , tN−1

denotes the (possibly non-uniform) sampling time, with TF
spectrum, Φ(t, ω), which is here assumed to be band-limited
within [−B,B], as well as being alias-free and smooth. Ex-
pressed differently, consider the TF plane evaluated over a
2-D grid over time and frequency, wherein the former is dis-
tributed according to t, whereas the latter is uniformly dis-
tributed over M frequency grid points. Any point inside a
given grid rectangle is assumed to lie on the plane defined
by the lower three corner of the rectangle, as illustrated in
Figure 1. Hence, for any point (t, f) in the TF plane, for
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Fig. 2: The log MSE for the proposed algorithm as compared
with the WVD and the smoothed spectrogram.

t ∈ [tj , tj+1) and ω ∈ [ωk, ωk+1), the TF spectrum satisfies

Φ(t, ω) =
Φ(tj+1, ωk)− Φ(tj , ωk)

tj+1 − tj
(t− tj)+

Φ(tj , ωk+1)− Φ(tj , ωk)

∆ω
(ω − ωk) + Φ(tj , ωk)

=
t− tj

tj+1 − tj
Φ(tj+1, ωk) +

ω − ωk
∆ω

Φ(tj , ωk+1)+(
1− t− tj

tj+1 − tj
− ω − ωk

∆ω

)
Φ(tj , ωk)

,α1(j, k)Φ(tj+1, ωk) + α2(k)Φ(tj , ωk)+

(1− α1(j)− α2(k)) Φ(tj , ωk) (1)

where ∆ω denotes the width of the frequency grid surface.
Furthermore, the TD covariance function is defined as

R(p, s) =

∫ B

−B
Φ

(
tp + ts

2
, ω

)
eiω(tp−ts)dω (2)

where the limits of the integral are due to the assumption that
the signal is band-limited, and tp denotes the time of the p:th
measurement.

3. THE PROPOSED TF SPECTRAL ESTIMATOR

Exploiting the expression in (1), one may form the covariance
matrix defined in (2) as

R(p, s) =

∫ B

−B
Φ (t, ω) eiωτdω (3)

=

M∑
k=1

∫ ωk+1

ωk

(
α1Φ(tj+1, ωk) + α2Φ(tj , ωk+1)+

(1− α1 − α2) Φ(tj , ωk)
)
eiωτdω (4)
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Fig. 3: The Manhattan distance for the proposed algorithm as
compared with the WVD and the smoothed spectrogram.

where τ = tp − ts and t =
tp+ts

2 . Forming the tensors

F j,k =

∫ ωk+1

ωk

α1(j)eiωτdω (5)

Gk =

∫ ωk+1

ωk

α2(k)eiωτdω (6)

Hk =

∫ ωk+1

ωk

eiωτdω (7)

one may rewrite (3) as

R(p, s) =

M∑
k=1

F j,k(t, τ)Φ(tj+1, ωk)+

(H1 −F j,1 − G1) (t, τ)Φ(tj , ω1)+

M∑
k=2

{(Gk−1 + Hk −F j,k − Gk) (t, τ) ×

Φ(tj , ωk)}+ GM (t, τ)Φ(tj , ωM+1) (8)

where X z,y denotes the (z, y):element of the tensor X , and
for all different tp and ts,

F j,k =

{
0 if τ = 0
t−tj

tj+1−tj
eiωk+1τ

iτ

(
1− ei∆ωτ

)
if τ 6= 0

Gk =

{
1
2∆ω if τ = 0

eiωk+1τ
(

1
iτ + 1

τ2∆ω

(
1− e−i∆ωτ

))
if τ 6= 0

Hk =

{
∆ω if τ = 0
eiωk+1τ

iτ

(
1− e−i∆ωτ

)
if τ 6= 0.

Then, the TF spectral estimate may be found by solving the
convex covariance fitting problem

min
Φ

∥∥∥R̂−R(Φ)
∥∥∥
F

subj. to ΦT = ΓΦT (9)
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Fig. 4: The MSE for the proposed algorithm as compared
with the WVD and the smoothed spectrogram.

with || · ||F denoting the Frobenius norm, (·)T the transpose,
and where R̂ is an initial estimate of the TD covariance ma-
trix, and the exchange matrix, Γ, is formed as

Γ =

 1

. .
.

1

 (10)

where all the empty indices of the matrix are zero. Γ en-
sures that Φ(t, ω) is symmetric in frequency, i.e., that Φ(t, ω)
for the frequencies between −B and 0 is mirrored at the fre-
quencies between 0 and B. This constrain may, obviously, be
dropped when the signal is not real-valued, thus allowing also
for non-symmetric spectra. The optimization problem in (9)
minimizes the distance between the estimated TD covariance
matrix, R̂, and the TF spectrum, based on the transformation
made up by the tensors F , G, and H. In order to minimize
the cost function in (9), we propose an Alternating Direction
Method of Multipliers (ADMM) [11] scheme, wherein the
cost function in (9) is divided into two parts

f(X) + g(U) = 1/2||R̂−R(X)||2F + 1/2||R̂−R(U)||2F

with the constraint u = Γx yielding the iterative updating

Xk+1 =argmin
X

(
f(X) + (ρ/2)||X − ΓUk + Dk||22

)
Uk+1 =argmin

U

(
g(U) + (ρ/2)||Xk+1 − ΓU + Dk||22

)
Dk+1 =Dk + Xk+1 + ΓUk+1

where ρ is the augmented Lagrangian parameter, d the dual
variable, and k denotes the k:th iteration. It should be stressed
that the initial estimation of R is important to the perfor-
mance of the proposed method. Given the non-stationary na-
ture of the assumed data, no temporal averaging may be ex-
ploited, and the TD covariance estimate thus instead needs to
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Fig. 5: The Manhattan distance for the proposed algorithm as
compared with the WVD and the smoothed spectrogram.

be formed over multiple realizations, say K. Here, we let

yk =
[
yk(1) yk(2) . . . yk(N)

]T
(11)

denote the k:th such realization, and form the initial estimate

R̂ =
1

K

K∑
k=1

y∗kyk (12)

We term the resulting method the Covariance-fitting Ap-
proach for Smooth Time-frequency (CAST) estimator.

4. NUMERICAL RESULTS

We proceed to examine the performance of the proposed al-
gorithm as compared to the classical WVD , defined as

WVD(t, ω) =
1

2π

∫ ∞
−∞

y
(
t+

τ

2

)
y∗
(
t− τ

2

)
e−iωτdτ

as well as the smoothed periodogram, given by

Ψ(t, ω) =
1

2π

∣∣∣∣∫ ∞
−∞

h∗(s− t)y(s)e−iωsds

∣∣∣∣2
where h(t) denotes some smooth window function (see also,
e.g., [8]). We here consider non-stationary data sequences
with TD covariance function

R(p, s) = q

(
tp + ts

2

)
r(tp − ts) (13)

where q(t) may be any positive valued function such that∫
|q(t)|2dt < ∞ (or any positive constant), and r(τ) must

fulfill the properties of a wide sense stationary covariance
function, i.e., so-called locally stationary processes (LSP) in
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Fig. 6: The figure shows the (a) true, and estimated TF distributions using (b) the WVD, (c) the proposed CAST estimator, and
(d) the smoothed spectrogram.

Silverman’s sense [12]. Here, r(t) and q(t) have been se-
lected to be Gaussian functions on the form

q(t) =e−
1
2 ( t

fs
)
2

(14)

r(τ) =e−
c
8 ( τ

fs
)
2

(15)

with the parameter c dictating the level of stationarity, and
fs being a time scaling factor measuring the time-spread of
the process. In the first example, we consider a uniformly
sampled linear combination of two LSPs; the first with c =
10, fs = 30, and centered at time −50 s, whereas the second
use c5, fs = 30, and is centered at time 50 s. Figures 2 and
3 illustrate the log mean squared error (logMSE), defined as
the logarithm of

DMSE =
1

NM

N∑
j=1

M∑
k=1

(
Φ̂(j, k)−Φtrue(j, k)

)2

(16)

with M denoting the number of considered frequencies,
which here and in the following examples is set toM = 1011,
and the Manhattan distance, defined as

DManhattan =
1

uΦ

N∑
j=1

M∑
k=1

∣∣∣Φ̂(j, k)−Φtrue(j, k)
∣∣∣ (17)

where uΦ =
∑N
j=1

∑M
k=1 |Φtrue(j, k)|. As may be seen in

the figures, after about 10 realizations, the proposed method

yields preferable performance as compared to the other meth-
ods for both error measures. Next, we investigate the per-
formance when the data is irregularly sampled. First, an ir-
regularly sampling scheme is created by removing 50% of
the samples at random positions, using the same sampling
scheme in each iteration. Figures 4 and 5 show the resulting
performance, clearly indicating the benefits of the proposed
method also in this case. It may be noted that the proposed
method is also notably more robust to the use of non-uniform
sampling as compared to the reference methods. Finally, Fig-
ure 6 illustrates a typical result for the proposed method as
compared to the WVD and the spectrogram, where the sig-
nal is a linear combination of 4 LSPs with the parameters
as specified as c = {1.05, 5, 5, 2}, fs = {8, 30, 10, 7}, and
with center time { − 80, 0, 40, 80}, using K = 50 realiza-
tions. As seen in the figures, the proposed method has good
time and frequency localization as well as amplitude accu-
racy, whereas the spectrogram suffer from notable leakage,
affecting not only the localization, but also the amplitude es-
timate. The WVD estimate has better amplitude estimates
as compared with the spectrogram, but has the wrong shape
for the middle component due to cross-terms. The proposed
method has good localization and amplitude estimate. The
pixeled appearance of the proposed method is due to the fact
that the number of frequency points is set to only M = 10.
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