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ABSTRACT

We develop a novel approach to optimal broadcast scheduling over
time-varying channels for an energy harvesting transmitter with
finite-capacity battery and non-ideal circuit power consumption. Re-
lying on the convex optimization tools, a low-complexity algorithm
is proposed to obtain the optimal transmission policy that maximizes
the weighted sum-throughput for multi-input multi-output (MIMO)
broadcast channels. Our approach provides the optimal benchmark
to all the practical schemes for energy harvesting powered broad-
casting with non-ideal circuit power.

Index Terms— Energy harvesting, broadcast channel, uplink-
downlink duality, non-ideal circuit power, time-varying channel.

1. INTRODUCTION

Energy harvesting powered wireless communications have attracted
growing interest in recent years. Different from the traditional com-
munication systems, the intermittent nature of most energy harvest-
ing sources causes bursty energy availability at the transmitter. Tak-
ing into account this new energy availability constraint, the optimal
transmission policies for energy harvesting nodes were investigated
for time-invariant and time-varying point-to-point channels [1–4], as
well as time-invariant broadcast channels [5–7].

All the works [1–7] assumed an ideal (zero) circuit-power
model. However, in practical short-range wireless transmissions,
there exists non-negligible circuit power consumption; e.g., the
AC/DC converter and RF amplifier can contribute to a significant
portion of energy consumption when transmit-power P > 0. For
many energy harvesting (e.g. sensor) applications, such a non-ideal
circuit power consumption needs to be taken into account. This issue
was only partly addressed for point-to-point transmissions in [8,9].

In this paper, we develop a novel approach to optimal broad-
cast scheduling over time-varying channels for energy harvesting
transmitter with non-ideal circuit power consumption. Unlike the
single-antenna broadcast models (where non-ideal circuit-power was
not considered) in [5–7], we consider a more general multi-input
multi-output (MIMO) model where both the transmitter and the re-
ceivers can have multiple antennas. Assuming full harvested en-
ergy and channel information, we develop the optimal policy that
maximizes the system throughput. Using the uplink-downlink dual-
ity [10] and a “nested optimization” method [7,8], we convert the op-
timal user-power scheduling for a MIMO broadcast channel into an
optimal sum-power allocation problem for an equivalent “point-to-
point” link. Relying on convex optimization principles, an efficient
algorithm is then proposed to obtain the optimal solution with a low
computational complexity. With the optimal sum-power obtained,
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the optimal user-power scheduling strategy can be subsequently de-
termined. Our approach provides the optimal benchmark to all the
practical schemes for energy harvesting powered broadcasting.

The rest of the paper is organized as follows. Section II describes
the broadcast channel, energy-harvesting, and circuit-power models.
Section III presents the proposed approach to optimal MIMO broad-
casting over time-varying channels. Section IV evaluates our scheme
with numerical examples, followed by the conclusion.

2. MODELING PRELIMINARIES

Consider a MIMO broadcast channel (BC) where the transmitter has
Nt antennas and each of theK users hasNr antennas. Let Hk(t) ∈
CNr×Nt denote the channel coefficient matrix from the transmitter
to the kth user, k = 1, . . . ,K, at time t. The received complex-
baseband signal at user k is given by:

yk(t) = Hk(t)x(t) + zk(t), (1)

where x(t) is the transmitted vector signal, and zk(t) is the additive
random noise. We assume without loss of generality (w.l.o.g.) that
zk(t) is complex-Gaussian with zero mean and covariance matrix I
(the identity matrix of size Nr). The transmitted signal is the sum
of the signal transmitted to individual users: x(t) =

∑K
k=1 xk(t).

The overall transmit covariance matrix is then
∑K
k=1 E[xkx

†
k] :=∑K

k=1 Γk, where the positive semidefinite Γk (denoted by Γk � 0)
is the transmit covariance matrix for user k. The total transmit-power
is given by

∑K
k=1 tr(Γk).

Assuming perfect channel state information at the transmitter,
the capacity of the MIMO BC can be achieved by dirty paper coding
(DPC). Let H := {H1, . . . ,HK}. With a total transmit-power P ,
the capacity region achieved by the DPC for MIMO BC is given by:

CBC(P ;H) = Co (∪πRπ(P ;H)) , (2)

where Co(·) denotes the convex hull, the union is over all permuta-
tion π of the user index set {1, 2, . . . ,K}, and

Rπ(P ;H) = ∪{Γk:
∑K
k=1

tr(Γk)≤P}{(r1, . . . , rK) :

rπ(u) ≤ log
|I +

∑k
u=1 Hπ(u)Γπ(u)H

†
π(u)|

|I +
∑k−1
u=1 Hπ(u)Γπ(u)H

†
π(u)|

, ∀k}.

Here | · | denotes the determinant operator.

2.1. Uplink-Downlink Duality

The BC capacity region can be alternatively characterized by the
capacity regions of a set of “dual” multi-access channels (MACs).
In the dual MAC, the received signal is:

y(t) =
∑K
k=1 H

†
k(t)xk(t) + z(t), (3)
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where xk(t) is the transmitted signal by user k, and z(t) is addi-
tive complex-Gaussian with zero mean and covariance matrix I . Let
Qk := E[xkx

†
k] � 0 denote the transmit covariance matrix for user

k, and let P := [P1, . . . , PK ] collect the transmit-power budgets for
users. For a given P , the MAC capacity region is:

CMAC(P ;H†) = ∪{Qk: tr(Qk)≤Pk, ∀k}{(r1, . . . , rK) :∑
k∈S rk ≤ log |I +

∑
k∈SH

†
kQkHk|, ∀S ⊆ {1, . . . ,K}}.

The uplink-downlink duality in [10] proves that the BC capacity re-
gion (2) equals the union of the above MAC capacity regions corre-
sponding to all power vectors P satisfying

∑K
k=1 Pk ≤ P ; i.e.,

CBC(P ;H) = ∪{P :
∑K
k=1

Pk≤P}CMAC(P ;H†) := CMAC(P ;H†).

2.2. Energy Harvesting Process

Suppose that the transmitter harvests renewable energy from the na-
ture and then stores it in the battery for future use. The energy state
changes when an energy arrival occurs. For a time-varying chan-
nel, the channel state H can in general change between two energy
arrivals. We assume that there are N + 1 channel or energy state
changing instants 0 = t0 < · · · < tN = T over the entire trans-
mission interval [0, T ]. We call the interval between two consecu-
tive state changing instants an epoch, whose length is denoted by
Li = ti − ti−1, i = 1, . . . , N , with

∑N
i=1 Li = T . The energy

arrival process is described by a set {(am, Em)},m = 0, 1, . . . ,M ,
where M denotes the number of energy arrivals, am denotes the
epoch index of the mth energy arrival time, and Em denotes the
amount of energy arriving at time tam . Let Emax denote the capac-
ity of the rechargeable battery. It is clear that 0 < Ei ≤ Emax,
i = 1, . . . ,M ; otherwise, the excess energy Ei − Emax cannot be
stored in the battery and we set w.l.o.g. Ei = Emax in such cases.

2.3. Non-Ideal Circuit Power Consumption

In short-range wireless networks, circuit power consumption (e.g.
RF amplifier) is non-negligible when transmit-power P > 0. On
the other hand, the transmitter could turn off the power amplifier to
avoid/reduce circuit power consumption [11] if no data transmission
occurs. We refer the transmitter status with a transmit-power P > 0
and that with P = 0 as the “on” and “off” modes. In practical
systems, the circuit power in the “off” mode is usually much smaller
than that in the “on” mode. Hence, we assume w.l.o.g. the circuit-
power during the “on” and “off” modes to be α > 0 Watts and 0
Watt, respectively. The total consumed power Ptotal is then [8]:

Ptotal =

{
P + α, P > 0,
0, P = 0.

(4)

3. BROADCASTING WITH NON-IDEAL CIRCUIT POWER

Let Hi := {Hi,1, . . . ,Hi,K} denote the channel per epoch i. To
account for the non-ideal circuit power, the transmitter can be turned
on for only a portion of an epoch [8]. Hence, we let li ≤ Li de-
note the length of the “on” period, and Γi = [Γi,1, . . . ,Γi,K ] col-
lect the transmit-covariance matrices during “on” period at the ith
epoch. Define l := [l1, . . . , lN ] and Γ := [Γ1, . . . ,ΓN ]. With the
covariance matrices in Γi, the sum transmit-power is then Pi :=∑K
k=1 tr(Γi,k). Let rBk (Γi) denote the achieved rate for user k,

and rB(Γi) := [rB1 (Γi), . . . , r
B
K(Γi)]. Define Eam :=

∑m−1
j=0 Ej ,

Ecm := (
∑m
j=0 Ej −Emax)+, ∀m, where (x)+ := max{x, 0} [2].

Provided a priority weight vector w := [w1, . . . , wK ], we aim to
maximize the weighted-sum of user throughput:

max
Γ, l

∑K
k=1[wk

∑N
i=1(rBk (Γi)li)]

s. t. (C1):
∑am
i=1[(Pi + α)li] ≤ Eam, m = 1, . . . ,M,

(C2):
∑am
i=1[(Pi + α)li] ≥ Ecm, m = 1, . . . ,M,

rB(Γi) ∈ CBC(Pi;Hi), 0 ≤ li ≤ Li, i = 1, . . . , N.
(5)

Here, (C1) are the causality constraints: the total energy consumed
up to tam cannot exceed the energyEam that has been accumulatively
harvested so far; whereas (C2) are the non-overflow constraints: the
transmitter should at least consume the energyEcm to prevent energy
overflow (i.e., waste) at tam due to finite battery capacity Emax.

DefineR(Pi;Hi) := maxrB(Γi)∈CBC(Pi;Hi)
∑K
k=1 wkr

B
k (Γi).

Relying on the uplink-downlink duality, we can show that:1

Lemma 1 The strictly concave function R(Pi,Hi) can be alterna-
tively obtained by the optimal value of the problem:

max
Qi,k�0

K∑
k=1

(wπ(k) − wπ(k+1)) log |I +

k∑
u=1

H†i,π(u)Qi,π(u)Hi,π(u)|

s. t.
∑K
k=1 tr(Qi,k) = Pi

(6)
where π is the permutation of user indices {1, . . . ,K} such that
wπ(1) ≥ wπ(2) ≥ · · · ≥ wπ(K), and wπ(K+1) = 0.

Let P := [P1, . . . , PN ]. Using R(Pi), we can convert the opti-
mal broadcasting problem (5) into an optimal sum-power allocation
problem for an equivalent “point-to-point” link:

max
P , l

∑N
i=1[R(Pi;Hi)li]

s. t. Ecm ≤
∑am
i=1[(Pi + α)li] ≤ Eam, m = 1, . . . ,M,

Pi ≥ 0, 0 ≤ li ≤ Li, i = 1, . . . , N.

(7)

3.1. Convex Reformulation and Optimality Conditions

The non-convex problem (7) can be reformulated into a convex prob-
lem through a change of variables. Define Ψi := (Pi + α)li. With
Ψ := [Ψ1, . . . ,ΨN ], we can rewrite (7) into:

max
Ψ, l

∑N
i=1[R( Ψi

li
− α;Hi)li]

s. t. Ecm ≤
∑am
i=1 Ψi ≤ Eam, m = 1, . . . ,M,

Ψi ≥ αli, 0 ≤ li ≤ Li, i = 1, . . . , N.

(8)

Since R(Pi;Hi) is a concave function of Pi per Lemma 1, it can be
shown thatR( Ψi

li
−α;Hi)li is a jointly concave function of (Ψi, li)

[12]. It then follows that (8) is a convex problem.
Let Λ := {λm, µm,m = 1, . . . ,M} where λm and µm de-

note the Lagrange multipliers associated with the causality and non-
overflow constraints. The Lagrangian of (8) is given by:

L(P , l,Λ) = C(Λ) +

N∑
i=1

[R(
Ψi

li
− α;Hi)li −

M∑
m=i

(λm − µm)Ψi]

where C(Λ) :=
∑M
m=1(λmE

a
m)−

∑M
m=1(µmE

c
m).

Let (Ψ∗, l∗) denote the optimal solution for (8) and Λ∗ the op-
timal Lagrange multiplier. Define θi :=

∑M
m=i λ

∗
m −

∑M
m=i µ

∗
m.

By the Karush-Kuhn-Tucker (KKT) conditions [12], we have: ∀i,

(Ψ∗i , l
∗
i ) = arg max [R(Ψi/li − α;Hi)li − θiΨi]

s. t. Ψi ≥ αli, 0 ≤ li ≤ Li.
(9)

1Proof for lemmas and theorem can be found in our journal version [13].
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In addition, the non-negative λ∗m and µ∗m satisfy the complementary
slackness conditions: ∀m,{

λ∗m = 0, if
∑am
i=1 Ψ∗i < Eam,∑am

i=1 Ψ∗i = Eam, if λ∗m > 0;
(10)

{
µ∗m = 0, if

∑am
i=1 Ψ∗i > Ecm,∑am

i=1 Ψ∗i = Ecm, if µ∗m > 0.
(11)

Let P ∗i = Ψ∗i /l
∗
i − α if l∗i > 0, and P ∗i take any arbitrary

non-negative value when l∗i = 0, ∀i. It is clear that (P ∗, l∗) is the
optimal solution of (7). From (9)–(11), the sufficient and necessary
optimality conditions for (7) are: ∀i, ∀m,

(P ∗i , l
∗
i ) = arg max li[R(Pi;Hi)− θi(Pi + α)]

s. t. Pi ≥ 0, 0 ≤ li ≤ Li;
(12)

{
λ∗m = 0, if

∑am
i=1(P ∗i + α)l∗i < Eam,∑am

i=1(P ∗i + α)l∗i = Eam, if λ∗m > 0;
(13){

µ∗m = 0, if
∑am
i=1(P ∗i + α)l∗i > Ecm,∑am

i=1(P ∗i + α)l∗i = Ecm, if µ∗m > 0.
(14)

3.2. Energy Efficiency Maximizing Power

Before solving (7), we consider finding the bits-per-Joule energy ef-
ficiency (EE) maximizing powers: ∀i

Pee(Hi) = arg maxP≥0 R(P ;Hi)/(P + α). (15)

With an auxiliary variable b, we write the problem (15) into:

maxP≥0, b b, s. t. R(P ;Hi)/(P + α) ≥ b. (16)

For a fixed b, consider the problem:

g(b) = maxP≥0 R(P ;Hi)− bP. (17)

Define f(Qi) =
∑K
k=1(wπ(k) −wπ(k+1)) log |I +

∑k
u=1 H

†
i,π(u)

Qi,π(u)Hi,π(u)|. Then by Lemma 1, (17) is equivalent to:

g(b) = maxP≥0 [max∑K
k=1

tr(Qi,k)=P f(Qi)− bP ]

= maxQi�0 [f(Qi)− b
∑K
k=1 tr(Qi,k)].

(18)

The problem in (18) is a convex program, which can be efficiently
solved by the Matlab CVX solver in polynomial time. Building on
the solution for (18), a bisectional search can be implemented to
solve (16) by finding the maximal b with g(b) ≥ αb; the solution
Pee(Hi) for (15) is in turn obtained.

3.3. Optimal Sum-Power Allocation

For any l∗i > 0, it follows from (12) that

P ∗i = arg maxPi≥0 [R(Pi;Hi)− θiPi]. (19)

LetR′(Pi;Hi) be the first derivative ofR(Pi;Hi). We clearly have:
R′(Pi;Hi) = θi, leading to : P ∗i = R′−1(θi;Hi), where R′−1 de-
notes the inverse function of R′. To obtain P ∗i , we need to solve:
maxPi≥0[R(Pi;Hi) − θiPi]. By Lemma 1, this is equivalent to
solving the convex program (18) with b = θi. Let Q∗i (θi;Hi) de-
note its optimal solution. Then

R′−1(θi;Hi) =
∑K
k=1 tr(Q∗i,k(θi;Hi)). (20)

Note that for the single-antenna single-user case, the optimal power
is given by the celebrated water-filling form: P ∗i = (1/θi −
1/|hi|2)+, where 1/θi serves as a water-level. For this reason,
we call ωi := 1/θi a generalized “water-level”.

Substituting R′(P ∗i ;Hi) = θi into (12) implies:

l∗i = arg max
0≤li≤Li

li[R(P ∗i ;Hi)−R′(P ∗i ;Hi)(P ∗i + α)]. (21)

Relying on (21), we can show that:

Lemma 2 The optimal transmission policy for (7) can only adopt ei-
ther one of the following three (“off”, “on-off” and “on”) strate-
gies per epoch i : (i) l∗i = 0, (ii) P ∗i = Pee(Hi), l∗i ≤ Li, or (iii)
P ∗i > Pee(Hi), l∗i = Li.

Lemma 2 states that the optimal sum-power allocation depends
on the EE maximizing powerPee(Hi); i.e. any transmit-powerPi <
Pee(Hi) per epoch i should not be adopted in the optimal policy. In
fact, since Pee(Hi) maximizes the bits-per-Joule EE, we can show
that any transmission strategy with a Pi < Pee(Hi) over an epoch
can be dominated by an on-off transmission with Pee(Hi), which
yields a higher throughput reward with the same energy expenditure.

It is easy to see that P ∗i = R′−1(1/ωi;Hi) increases as the
water-level ωi increases. Using this fact and the complementary
slackness conditions (13)–(14), we can establish that:

Lemma 3 In the optimal policy, the powers for epoches i with li > 0
are given by a water-filling form: P ∗i = R′−1(1/ωi;Hi), where the
water-level ωi increases after a tam with

∑am
i=1(P ∗i + α)l∗i = Eam,

and it decreases after a tam with
∑am
i=1(P ∗i + α)l∗i = Ecm.

The structures of the optimal policy revealed in Lemmas 2–3
imply that we should implement a water-level based “clipped string-
tautening” approach to find the optimal solution for (7). To this end,
let ω+

am or ω−am denote the constant water-level to make the mth
causality or non-overflow constraint become tight at tam . Given an
invariant water-level ω before tam , the power per epoch i is given by
P ∗i = R′−1(1/ω;Hi) if l∗i > 0. On the other hand, it follows from
Lemma 2 that we have P ∗i ≥ Pee(Hi) if l∗i > 0. Define:

ωee(Hi) := 1/R′(Pee(Hi);Hi), ∀i. (22)

This implies that we can have l∗i > 0 only when ω ≥ ωee(Hi). With
the water-level ω, the optimal strategy per epoch i is then: l∗i = 0, if ω < ωee(Hi),

P ∗i = Pee(Hi), l∗i ≤ Li, if ω = ωee(Hi),
P ∗i = R′−1(1/ω;Hi), l∗i = Li, if ω > ωee(Hi).

(23)

Let Ψi(ω;Hi) = (P ∗i + α)l∗i . By (23), we have: (i) Ψi(ω;Hi) =
0, if ω < ωee(Hi); (ii) Ψi(ω;Hi) ∈ [0, (Pee(Hi) + α)Li], if
ω = ωee(Hi); and (iii) Ψi(ω;Hi) = (R′−1(1/ω;Hi) + α)Li, if
ω < ωee(Hi). Thus, the values of ω+

am and ω−am , m = 1, . . . ,M ,
can be calculated by solving the equations: ∀m∑am

i=1Ψi(ω
+
am ;Hi) = Eam;

∑am
i=1Ψi(ω

−
am ;Hi) = Ecm. (24)

Since
∑am
i=1 Ψi(ω;Hi) is increasing in ω, the equations in (24) can

be solved by a bisectional search.
With ω−am and ω+

am obtained, we are ready for implementation
of the proposed “clipped water-tautening” approach to solve (7).
Let E := {E0, E1, . . . , EM}, L := {L1, . . . , LN} and H :=
{H1, . . . ,HN}. The optimal {P ∗, l∗} for (7) can be obtained by
calling Procedure ScheduleW(E , L, H) in Algorithm 1.
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Algorithm 1 “Clipped Water-Tautening”
1: procedure SCHEDULEW(energy set E , length set L, channel set H)
2: Noffset = 0, and P∗i = 0, l∗i = 0, ∀i;
3: whileNoffset < N do
4: [τ , ω,E] = FirstChangeW(E , L, H);
5: for i = 1 to τ do
6: P∗Noffset+i

= R′−1(1/ω;Hi) given by (20);
7: if ω > ωee(Hi) then l∗Noffset+i

= Li; end if
8: end for
9: if there exists iee with ωee(Hiee ) = ω then

10: lNoffset+iee =
E−

∑τ
i=1,i 6=iee

(P∗Noffset+i
+α)l∗Noffset+i

Pee(Hiee )+α
;

11: end if
12: Noffset = Noffset + τ , and update E , L, H;
13: end while
14: end procedure

15: function [τ , ω, E] =FIRSTCHANGEW(E , L, H)
16: ω− = 0, ω+ =∞, τ− = τ+ = 0;Me = |E| − 1;
17: form = 1 toMe do
18: calculate ω+

am
and ω−am by solving equations in (24);

19: if ω+
am
≤ ω+ then τ+ = am, ω+ = ω+

am
,E+ = Eam; end if

20: if ω−am ≥ ω
− then τ− = am, ω− = ω−am ,E− = Ecm; end if

21: if ω− > ω+ & τ− < τ+ then
22: return τ = τ−, ω = ω−,E = E−;
23: else if (ω− ≥ ω+ & τ− ≥ τ+) or (τ+ = Me) then
24: return τ = τ+, ω = ω+,E = E+;
25: end if
26: end for
27: end function

The key component in Algorithm 1 is Function FirstChangeW,
which determines the first water-level changing time tτ and the
water-level ω used before it. The two candidate water-levels are
updated as: ω+ = minam≤i ω

+
am and ω− = maxam≤i ω

−
am , which

are in fact the maximum and minimum value for an invariant water-
level to satisfy all the causality and non-overflow constraints before
ti, respectively. If we have ω+ < ω− at a certain ti, then the water-
level needs to be changed before it since no invariant water-level
can satisfy all the causality and non-overflow constraints so far. The
first water-level changing time can be obtained by comparing τ−

and τ+ to see which type of constraint first becomes tight. When
the returned ti < T , Function FirstChangeW can be reused for a
new (E , L, H) system over the remaining time to find the next
water-level changing time and the next water-level.

The global optimality of the proposed Algorithm 1 is formally
stated in the following theorem:

Theorem 1 Algorithm 1 computes the optimal transmission policy for
(7) with a worst-case complexity O(M2).

3.4. Optimal Broadcasting Solution

With the optimal sum-power P ∗i per epoch i, the optimal uplink ma-
trices Qi,k(P ∗i ) for (6) can be efficiently obtained in polynomial
time. Then by uplink-downlink duality, we can obtain the optimal
downlink matrices Γ∗i,k from Qi,k(P ∗i ) as follows [10]. Define:

Ai,k = I + Hi,π(k)(
∑k−1
u=1 Γ

∗
i,π(u))H

†
i,π(k),

Bi,k = I +
∑K
u=k+1(H†i,π(u)Q

∗
i,π(u)(P

∗
i )Hi,π(u)).

Using Ai,k and Bi,k, we have: ∀k = 1, . . . ,K,

Γ∗i,π(k) = B
− 1

2
i,k Fi,kG

†
i,kA

1
2
i,kQ

∗
i,π(k)(P

∗
i )A

1
2
i,kGi,kF

†
i,kB

− 1
2

i,k

where we obtain the matrices Fi,k and Gi,k by decomposing the ef-

fective channel using SVD: B
− 1

2
i,k H†i,π(k)A

− 1
2

i,k = Fi,kSiG
†
i,k with

a square and diagonal Si.
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Fig. 1. Average throughput versus energy arrival rate λe.

Note that Γ∗i,π(1) = B
− 1

2
i,1 Fi,1G

†
1Q
∗
i,π(1)(P

∗
i )Gi,1F

†
i,1B

− 1
2

i,1 ,
which only requires the knowledge of Qi,k(P ∗i ). When calculating
Γi,π(k), k > 1, we need Ai,k whose calculation requires the knowl-
edge of previously calculated Γi,π(u), u = 1, . . . , k − 1. In such a
sequential way, all Γ∗i,k can be determined.

Overall, the bisectional search to find Pee(Hi) is geometrically
fast. With P ∗i , transmit-covariance matrices Γ∗i,k, ∀k, can be ob-
tained through convex programming tools in polynomial time. It
then readily follows that the optimal broadcasting schedule {Γ∗, l∗}
for (5) can be obtained with a worst-case complexity O(KM2).

4. NUMERICAL RESULTS

For a time-varying MIMO broadcast channel with K = 2 users,
consider data transmission over T = 50 seconds. The weight vector
w = [1, 1], and each element in channel matrix Hi,k, k = 1, 2, is
a zero-mean complex Gaussian random variable with unit variance.
The battery capacity of the transmitter is Emax = 100 Joules, and
non-ideal circuit-power α = 3 Watts. Assume a stochastic energy
harvesting setup modeled by the compound Poisson process with
mean λe [8]. The amount of energy in each arrival is assumed to be
independent and uniformly distributed with mean 50 Joules. Fig. 1
shows the average throughput versus λe for a simulated wireless link
when (Nt, Nr) is set to (2, 2) and (4, 2), respectively. Each result
is obtained as the average of 10 randomly generated trial cases. The
revealed structure of the optimal clipped water-tautening (CWT) pol-
icy also motivates us to develop an online CWT scheme which as-
sume only causal knowledge of the harvested energy and channel
realizations in [13]. In addition to the offline CWT algorithm, we in-
clude the performance of the online CWT policy and offline EE-SE
policy (which we generalize to the MIMO BC case) in [8]. With-
out taking into account the finite battery-capacity, the EE-SE policy
incurs throughput loss for all λe values. It is shown that the online
CWT scheme achieves a reasonably good throughput for all λe val-
ues, and even outperforms the offline EE-SE policy for large λe. It
is also clearly observed that the sum-rate is significantly improved
for the MIMO BC as the number of transmit-antennas Nt doubles.

5. CONCLUSIONS

We proposed a novel approach to optimal transmission policy for
energy-harvesting powered MIMO BC with non-ideal circuit power
consumption over time-varying wireless channels. An efficient al-
gorithm was developed to find the optimal solution with a low com-
putational complexity.
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