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ABSTRACT

We consider in this paper multiuser downlink beamforming with in-

terference cancellation (BFIC). In our BFIC problem, the total trans-

mitted power of the base station (BS) is minimized under signal-

to-interference-plus-noise ratio (SINR) requirements of the mobile

stations (MSs) and single-stage interference cancellation (SSIC) is

adopted at the MSs. The challenge of the problem lies in its combi-

natorial and non-convex nature. We propose a semidefinite program-

ming (SDP) based branch-and-bound (BnB) algorithm to (optimally)

solve the BFIC problem. The SDP-based BnB algorithm employs

SDP and sequential second-order cone programming. We further

develop a fast heuristic algorithm for large-scale applications. Sim-

ulations show that employing SSIC achieves significant reductions

in total transmitted BS power. The proposed SDP-based BnB algo-

rithm optimally solves all considered instances of the BFIC problem,

and the heuristic algorithm yields near-optimal solutions.

Index Terms— Downlink Beamforming, Interference Cancel-

lation, SDP-based Branch-and-Bound, Fast Heuristic Algorithm

1. INTRODUCTION

Multiuser downlink beamforming represents one of the key enabling

technologies for current and future cellular networks and has already

been intensively investigated in the literature (see, e.g., [1–14]). In

the conventional downlink beamforming problem, the total transmit-

ted power of the base station (BS) is minimized while guaranteeing

the received signal-to-interference-plus-noise ratio (SINR) require-

ments of the mobile stations (MSs). Both, efficient convex optimiza-

tion techniques (see, e.g., [6–9]) and specialized iterative algorithms

(see, e.g., [10–14]) have been proposed to optimally solve the SINR-

constrained multiuser downlink beamforming problem. In most of

the existing works, it is assumed that the co-channel interference re-

ceived at the MSs is treated as noise.

While treating co-channel interference as noise simplifies the

mobile receivers it overlooks the potential of exploiting the co-

channel interference. For instance, it is well-known that interference

cancellation (IC), in which the MSs decode and subtract the strong

interference, achieves better performance in terms of, e.g., increase

in link capacity and reduction in transmitted BS power [13–17]. In

this paper, we consider multiuser downlink beamforming with in-

terference cancellation (BFIC). To limit the decoding complexity at

the MSs, we focus on single-stage interference cancellation (SSIC).

That is, each MS at most decodes and cancels one interfering signal.

Depending on the strength of the interfering signal at a MS, it may

directly decode its own signal by treating other signals as noise, or
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decode and cancel one interfering signal and then decode its de-

sired signal (treating the remaining interference as noise). Multiuser

downlink beamforming combined with dirty-paper coding was stud-

ied in [13–15]. However, the optimization of the decoding order was

not considered in [13–15] and the complexity of dirty-paper coding

may be prohibitive in practice.

Similar to existing work on IC [13–17], to simplify the system

model and the presentation, the overhead of IC is not explicitly taken

into account in this paper. Hence, the results presented in this paper

serve as performance bounds for practical systems.

Since the decisions about the decoding orders at the MSs are

coupled in the downlink SINR constraints through co-channel inter-

ference when employing SSIC, the BFIC problem of interest repre-

sents a combinatorial nonlinear program. We formulate the BFIC

problem as a non-convex quadratically constrained quadratic pro-

gram (QCQP) with on-off constraints [18–24], where the on-off con-

straints [24] model the decisions about the decoding orders at the

MSs.

We develop a semidefinite programming (SDP) based branch-

and-bound (BnB) algorithm to (optimally) solve the BFIC problem.

In the BnB algorithm, a binary BnB search tree is constructed, with

each node on the tree representing a non-convex QCQP. The non-

convex QCQP at a node represents a subproblem of the BFIC prob-

lem and arises from fixing the decoding orders at one or more of

the MSs. We adopt the celebrated semidefinite relaxation (SDR)

approach for the non-convex QCQP at each node, relaxing the non-

convex QCQP into a semidefinite program (SDP) by dropping the

non-convex rank-one constraints [19–23]. Since the SDR may not be

exact, we further include the sequential second-order cone (SSOC)

algorithm to compute a (possibly local) solution of the non-convex

QCQP at the leaf nodes when the SDR approach does not yield rank-

one solutions. We further propose a customized branching rule to

speed up the BnB solution process. Moreover, a low-complexity

heuristic algorithm is developed to approximately solve the BFIC

problem for applications in large-scale systems.

The simulations show that significant reductions in the total

transmitted BS power can be achieved by employing SSIC. The

proposed SDP-based BnB algorithm optimally solves the consid-

ered instances of the BFIC problem, and the fast heuristic algorithm

yields total transmitted BS power that is close to the solution ob-

tained by the proposed SDP-based BnB method.

2. RELATION TO PRIOR WORK

Downlink beamforming has been intensively studied in [6–14, 20–

22], but without considering IC. IC in the context of max-min

power control and admission control has been studied in [16, 17],

but without beamforming. The authors of [13–15] consider IC and
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beamforming assuming nonlinear dirty-paper coding schemes, but

do not present any practical algorithm. In contrast to the existing

approaches [6–13,13–17,20–22], we consider in this paper the joint

optimization of multiuser downlink beamforming and interference

cancellation (BFIC). A SDP-based BnB algorithm, which is able to

solve the BFIC problem for all considered instances, and a prac-

tical heuristic algorithm yielding close-to-optimal solutions, are

developed.

3. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a cellular downlink system consisting of one BS,

equipped with L > 1 antennas, that serves K > 1 single-antenna

MS. Denote hk ∈ C
L and wk ∈ C

L as the frequency flat channel

vector and the beamforming vector of the kth MS, k ∈ K, with the

MS indices set K , {1, . . . ,K}. The received signal yk at the kth

MS can then be written as (see, e.g., [6–14, 20–22]):

yk = h
H
k wkxk +

K∑

j=1,j 6=k

h
H
k wjxj + nk, ∀k ∈ K, (1)

where xk ∈ C represents the unit-power data symbol, designated for

the kth MS, and nk ∈ C denotes the additive noise at the kth MS,

with zero mean and variance σ2
k, ∀k ∈ K. As in [6–14, 20–22], it is

assumed that the data symbols for different MSs are mutually statis-

tically independent and also independent from the receiver noise.

In our BFIC problem, the kth MS may either directly decode its

own signal (treating the co-channel interference as noise), or decode

and cancel/subtract one interfering signal and then decode its own

signal (treating the residual co-channel interference as noise) [17].

Following the SINR-constrained design as presented in [6–14], to

be able to directly decode its own signal, for the kth MS the received

SINR at the kth MS, denoted by SINRk, shall exceed a given thresh-

old γk, i.e.,

SINRk ,
w

H
k hkh

H
k wk∑K

j=1,j 6=k w
H
j hkh

H
k wj + σ2

k

≥ γk. (2)

Accordingly, if the kth MS decodes and cancels the signal of the lth
MS and then decodes its own signal, it is required that [16, 17]:

SINR
(l)
k ,

w
H
l hkh

H
k wl∑K

j=1,j 6=l w
H
j hkh

H
k wj + σ2

k

≥ γl (3a)

SINR
(−l)
k ,

w
H
k hkh

H
k wk∑K

j=1,j 6=k,l w
H
j hkh

H
k wj + σ2

k

≥ γk (3b)

where SINR
(l)
k denotes the SINR associated with the signal of the

lth MS seen at the kth MS, and SINR
(−l)
k represents the SINR of the

kth MS after cancelling the interfering signal of the lth MS.

We introduce binary variables ak,l ∈ {0, 1}, k, l ∈ K modelling

the IC procedure at the MSs. For a MS k ∈ K, we set ak,k = 1 if

and only if MS k directly decodes its own signal, and ak,l = 1 if and

only if MS k decodes and cancels MS lth signal first. With SSIC,

for each MS k exactly one of the binary variables {ak,l, l ∈ K} is

equal to one. Let A = (ak,l) ∈ {0, 1}K×K , be the binary matrix,

summarizing the decoding order of all MS, i.e., the kth row of the

matrix A stores the decoding order of the kth MS.

It is further assumed in this paper, that the channel vectors

{hk, k ∈ K} are known at the BS. In the BFIC problem, the BS

determines the decoding order for all MSs and jointly computes the

beamformers. Similar to the existing works [16, 17] that consider

power control and SSIC (without beamforming), the BFIC problem,

in which the total transmitted BS power is minimized while ensuring

the SINR targets of the MSs, can be stated as

min
{wk,A}

K∑

k=1

‖wk‖
2
2 (4a)

s.t. SINRk ≥ γk if ak,k = 1 k ∈ K (4b)

SINR
(l)
k ≥ γl if ak,l = 1, l, k ∈ K, l 6= k (4c)

SINR
(−l)
k ≥ γk if ak,l = 1, l, k ∈ K, l 6= k (4d)

K∑

l=1

ak,l = 1, k ∈ K (4e)

wk ∈ C
L, k ∈ K, A ∈ {0, 1}K×K

(4f)

where the SINR constraint in (4b) are present for the MSs that do

not adopt IC, and the SINR constraints in (4c) and (4d) correspond

to the MSs that employ SSIC [16, 17].

The formulated BFIC problem (4) represents a non-convex

QCQP with on/off constraints [24] and belongs to the class of mixed

integer nonlinear programs (MINLP). MINLPs are not easy to solve,

due to the combinatorial and nonlinear nature of the problem. As the

numerical results will show, even the state-of-the-art MINLP solver

Baron [25] is not able to compute the optimal solutions of the BFIC

problem (4) in reasonable time. Thus, we develop a customized

SDP-based BnB algorithm for solving the BFIC problem (4), mak-

ing use of the SDR technique [19–23] and the SSOC algorithm.

4. SDP-BASED BRANCH-AND-BOUND ALGORITHM

We now present our SDP-based BnB algorithm for solving the BFIC

problem (4) that is a modification of a standard BnB algorithm [26,

27]. We deal with the combinatorial nature of the BFIC problem re-

sulting from the IC decisions at the MSs within the BnB algorithm.

In the proposed SDP-based BnB algorithm Alg.1 for solving (4),

at every node of the BnB-tree a subproblem of the BFIC problem

(4) is considered that is obtained by fixing the decoding order for a

subset of the MSs, omitting the constraints (4e). The subproblem is

solved or at least a lower bound is determined using SDR techniques.

Similar to general BnB algorithms [26, 27], depending on the gen-

erated lower and upper bounds for (4), subtrees of the BnB-tree can

be pruned or we have to branch deeper into the BnB-tree by fixing

the decoding order of more MSs. In the end, if we have searched

the whole BnB-tree, we have either found a global solution for the

BFIC problem (4), or, since we are using SDR techniques, a feasible

solution for (4). In the latter case we can state the (possible) gap

between the global solution of (4) and the best solution found by our

algorithm. The details of the proposed SDP-based BnB algorithm

are presented next.

The problem at a node in the SDP-based BnB algorithm is a

subproblem of (4) (omitting (4e)), and depends on the (partial) de-

coding order fixation A = (ak,l) ∈ {0, 1}K×K . In oder to derive

good lower bounds at the nodes in the BnB-tree, we additionally add

the SNR constraint

SNRk , w
H
k hkh

H
k wk ≥ γkσ

2
k (5)

to the problem of the node, if the decoding order for the MS k is

not fixed yet, i.e.,
∑K

l=1 ak,l = 0. Note that we can add the SNR

constraint (5) to the BFIC problem (4) without changing the optimal

solution since the SNR defined in (5) is always bigger than the SINR
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in (4b) and (4d). The problem at a node in the SDP-based BnB

algorithm is given by:

min
{wk}

K∑

k=1

w
H
k wk s.t. (4b), (4c), (4d), (4f),

(5), if

K∑

l=1

ak,l = 0.

(6)

For many (non-convex) QCQPs the consideration of the correspond-

ing SDR has turned out to be very useful [20–23]. Thus, in our

SDP-based BnB algorithm, we do not solve the non-convex QCQP

of a node (6) directly but consider its SDR [20–23] that is obtained

by introducing matrix variables Wk for wkw
H
k and dropping the

non-convex constraints rank(Wk) = 1, ∀k ∈ K. The resulting SDP

is given by:

min
{Wk}

K∑

k=1

tr(Wk) (7)

s.t. tr(HkWk) ≥ γk

K∑

j=1,j 6=k

tr(HkWk) + γkσ
2
k, if ak,k = 1

tr(HkWl) ≥ γl

K∑

j=1,j 6=l

tr(HkWj) + γlσ
2
k, if ak,l = 1

tr(HkWk) ≥ γk

K∑

j=1,j 6=l,k

tr(HkWj) + γkσ
2
k, if ak,l = 1

tr(HkWk) ≥ γkσ
2
k, if

K∑

l=1

ak,l = 0

Wk � 0, ∀k ∈ K.

Let Wk, k ∈ K, be the solution of the SDP (7). Similar to [20–

23], we call an optimal solution of a SDP “rank-one” if each matrix

Wk, k ∈ K is of rank one. If the solution Wk, k ∈ K, is rank-one,

i.e., Wk = wk(wk)
H , ∀k ∈ K, then wk, k ∈ K, is an optimal

solution of the non-convex QCQP (6) with the same decoding order

fixation A. Otherwise, we only get a lower bound for the non-convex

QCQP (6). Due to the results in [21, 22], we know in advance, that

some instances of (7) have a rank-one solution, namely: If at most

two MSs perform SSIC, then we can construct a rank-one solution in

polynomial time, given the solution of the SDP (7), since the number

of constraints is less or equal the number of separable blocks plus

two.

Regardless of whether the solution of the SDP at a node (7),

where the decoding order is only partly fixed, is rank-one or not we

further branch on the decoding order. At leaf nodes of the BnB-tree

the decoding order for all MS has been fixed and satisfies (4e). If the

solution of a leaf node SDP (7) is rank-one, we have found a feasible

solution (upper bound) to the BFIC problem (4). If the solution is

better than the best solution found so far, we store the new solution

as the current best solution. At leaf nodes, where the SDP does not

have a rank-one solution, but the objective of the SDP is better than

the current best solution, we apply the SSOC algorithm Alg.2, which

is described in Sec. 5. With the SSOC algorithm Alg.2 we can find

a (local) solution of the non-convex QCQP (6) of the leaf node, if

the SDP (7) does not have a rank-one solution. We further store the

decoding order Asdp and the objective of the SDP P sdp of all leaf

nodes, which do not have a rank-one solution in the list of crucial

nodes C. However, if the SDP solution of a leaf node is worse than

the best solution found so far, we can cut off the node regardless of

the possible gap between the solution of the SDP (7) and QCQP (6).

At the end of our SDP-based BnB algorithm, we compare the

objective value of the best solution found P best with the minimum

of the SDP solutions stored in the list of crucial nodes C, denoted by

P lb. If P b ≤ P lb, we have solved the BFIC problem to optimality.

Otherwise, we have found a feasible solution for the BFIC problem

and can state the relative gap (P b − P lb)/P lb.

In BnB algorithms the development of a suitable branching rule

is important to speed up the solution process. As mentioned above,

in the SDP-based BnB algorithm Alg.1 we branch on the decoding

order of the MSs. In our SDP-based BnB algorithm the order in

which we fix the decoding order of the MSs depends on the chan-

nel gain ‖hk‖2 for all MS k ∈ K. We fix the decoding order for

MSs with less channel gain first. The branching order is stored in

f ∈ {1, . . . ,K}K , i.e., f1 is the index of the MS with lowest chan-

nel gain, f2 the index of the MS with second lowest channel gain,

and so on. In depth one of the BnB tree, the decoding order of MS

f1 is fixed, in depth two in addition the one of the MS f2, and so on.

Moreover, in depth m, we first consider subproblems of (4), corre-

sponding to decoding order fixation, in which signals of MSs with

less channel gain are decoded first at the MS fm. We further perform

depth first search [26, 27]. Whenever we have to branch, we update

the set of unsolved nodes L, adding the K children nodes of the

current node to the list of unsolved nodes according to the proposed

branching rule stored in f .

In the preprocessing step of Alg.1, we apply the low- channel-

gain heuristic Alg.3, presented in Sec.6, to generate a close-to-

optimal solution of the BFIC problem. With this initial solution we

can prune a lot of nodes in the SDP-based BnB algorithm.

In Alg.1, we denote a solution by the tuple S = ((wk),A, P ),
indicating with the superscript, b, heu, sdp, ssoc the best solution

of the BFIC problem (4) found so far, the solution of Alg.3, the

solution of the SDP (7), and the solution of Alg.2, respectively.

Algorithm 1: SDP-based BnB algorithm for BFIC

Preprocessing: Apply heuristic Alg.3 from Sec.6.

Initialization: Determine branching rule f , set Sb = Sheu.

Initialize set of unsolved nodes L, set C = ∅.

while L 6= ∅ do

Select problem A
node from L, set L = L \ {Anode}.

Solve the SDP (7) corresponding to A
node.

if SDP (7) is infeasible or P sdp > P b then
prune subtree.

if P sdp < P best and (4e) is not satisfied then
update L according to branching rule f .

if P sdp < P b and (4e) is satisfied then

if (Wk)
sdp is rank-one then

Sb = Ssdp, where

w
sdp
k (wsdp

k )H = W
sdp
k , ∀k ∈ K.

else

store (Asdp, P sdp) in C, apply Alg.2 from

Sec.5.

if P ssoc < P b then

Sb = Sssoc.

Determine relative gap using C and P b.

Output: Sb, relative gap.

As the numerical results will show, for the considered instances we

can solve the BFIC problem to optimality, i.e., we have a gap of 0%.

Note that in contrast to standard MINLP solver, such as Baron [25],

we do not need spatial branching to achieve global optimality.
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5. SEQUENTIAL SECOND-ORDER CONE ALGORITHM

In our SDP-based BnB algorithm, at every leaf node we solve the

SDP relaxation (7) of the non-convex QCQP (6). If the SDP solution

is not rank-one, we apply the SSOC algorithm Alg.2, which is a

special case of the sequential convex programming algorithm [28].

The convergence of the SSOC algorithm has been proven in [28].

For easier presentation, we consider the slightly more general real-

valued optimization problem:

min
{z∈Rn}

z
T
z s.t. ‖((Cmz)T , 1)‖2 − ‖Bmz‖2 ≤ 0, m ∈ M (8)

where Cm ∈ R
km×n, Bm ∈ R

lm×n,m ∈ M. Casting the QCQP

subproblems (6) of the BFIC problem (4) into this form is straight-

forward. In particular, there exist mappings

[w1, . . . ,wK ] ∈ C
L×K 7→ z ∈ R

2LK×1
(9)

[h1, . . . ,hK ] ∈ C
L×K 7→ Bm ∈ R

2×2LK ,m ∈ M (10)

[h1, . . . ,hK ] ∈ C
L×K 7→ Cm ∈ R

2K×2LK ,m ∈ M. (11)

The SSOC algorithm consists of successive linear approximation of

the non-convex part of the constraint set in (8) [28–31]. Given an

iterate z
(j), the convex optimization problem solved in the jth itera-

tion of the SSOC algorithm, is given by:

min
{z∈Rn}

z
T
z (12)

s.t. ‖((Cm(z))T , 1)‖2 ≤

∑lm
i=1(Bm)i·z

(j) · (Bm)i·

‖Bmz(j)‖2
z, m ∈ M

where (Bm)i· denotes the ith row of the matrix Bm. When apply-

Algorithm 2: Sequential Second-Order Cone Algorithm

Initialization: Choose starting point z(1). Set j = 1.

Step 1: Given z
(j), solve (12), denote the solution by z

(j+1).

Step 2: If ‖z(j) − z
(j+1)‖ ≤ ε, Stop, Return z

(j).

Otherwise, increase j by 1, and go back to Step 1.

ing Alg.2, in our SDP-based BnB Alg.1 the required starting point

is generated as follows: Given the solution Wk, k ∈ K, of the SDP

(7) we set wk = (λmax(Wk))
1/2

vk, k ∈ K, where λmax(Wk)
denotes the maximal eigenvalue of the matrix Wk with correspond-

ing normalized eigenvector vk. The vector z
(1) is obtained from

{vk}
K
k=1 according to the mapping in (9).

6. A LOW- COMPLEXITY HEURISTIC FOR BFIC

Although Alg.1 is able to globally solve the BFIC problem to opti-

mality for all considered instances, computational low-complexity

suboptimal solutions for the BFIC problem (7) are important for

large-scale applications. We propose the following low-channel-

gain procedure. Besides its entitlement as a stand-alone heuristic,

the low-channel-gain procedure is used in the preprocessing step of

Alg.1. In the low-channel-gain procedure, summarized in Alg. 3,

we first fix the decoding order for all MSs, denoted by A. In the

second step, the corresponding problem (4) is approximately solved,

via solving the corresponding SDP (7) and if needed using the SSOC

algorithm Alg.2 from Sec. 5 to generate a feasible solution for the

BFIC problem (4). We compare the objective value of the generated

solution to that of the downlink beamforming problem without IC

(Adb = (al,k), ak,k = 1, ∀k ∈ K) and take the best of the two. For

the low-channel-gain procedure two SDPs have to be solved, and

Alg. 2 has to be applied at most once.

Algorithm 3: Low-channel-gain procedure for BFIC problem

Initialization: Determine ‖hk‖, ∀k ∈ K. We assume

without loss of generality ‖h1‖ ≤ ‖h2‖ ≤ · · · ≤ ‖hK‖.

Choose the ⌊K/2⌋ MSs with lowest channel gain, and store

indices in the set I := {1, 2, . . . , ⌊K/2⌋}.

Calculate Dk,l := |hH
k hl|/(‖hk‖‖hl‖), ∀k, l ∈ K.

Step 1: Fix the decoding order for each MS A = (ak,l):
for k ∈ K do

l̄k = argmaxl∈I Dk,l.
if maxl∈I Dk,l ≥ 0.3 set ak,l̄k

= 1 else ak,k = 1.

Step 2: (Locally) solve problem (4) for A = (ak,l) fixed.

Step 3: Choose best out of A and A
db.

7. NUMERICAL RESULTS

We simulate a network comprising one BS equipped with 4 an-

tennas and K MS, where K ∈ {3, 4, 5, 6}. The SINR threshold

γ = γk, k ∈ K, varies from −4 dB to 6 dB with a step size of 2. The

channel model and parameters are chosen as in [32, 33]. Results are

averaged over 200 Monte Carlo runs. The merit of SSIC in terms of

power reduction compared to downlink beamforming without IC is

summarized in Fig.1. The curves from top to bottom correspond re-
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Fig. 1. Power reduction due to SSIC for K=5.

spectively to the optimal solution computed by our SDP-based BnB

algorithm, the solution of the heuristic, the solution of the downlink

beamforming problem, and, as a benchmark, the best solution found

by Baron, using a Big-M formulation of (4), with a runtime limit of

100s and the downlink beamforming solution as an initial solution.

The time limit is chosen such that a fair comparison to our proposed

BnB algorithm can be made which requires a maximal running time

of 52.9s (on average 6.9s) for K = 5 MSs. In contrast to Baron,

we were able to globally solve the BFIC (4) for all considered in-

stances using the proposed Alg.1. Fig. 1, for example shows that

for γ = 2dB a power reduction of 70%, 59% can be achieved with

Alg.1, Alg.3, respectively. In addition to the achievable power re-

duction, with SSIC more MS can be served compared to the case

of downlink beamforming without IC. For instance, for K = 6 and

γk ≥ 4dB the downlink beamforming problem was always infea-

sible whereas the BFIC problem was feasible and could be solved

using Alg.1. The average number of visited nodes, i.e., the number

of solved SDPs in Alg.1, to solve the BFIC problem (4), is displayed

in the table below. In the second row, we added the number of pos-

sible decoding orders. The SSOC algorithm Alg.2 was applied in

K (number of MSs) 3 4 5 6

nodes in Alg.1 9.5 21 73 430

exhaustive search 27 256 3126 46656

1%, 9% of the considered instances for K = 5, 6, respectively.

7777



8. REFERENCES

[1] H.-T. Wai, Q. Li, and W.-K. Ma, “A convex approximation

method for multiuser MISO sum rate maximization under dis-

crete rate constraints,” in Proc. IEEE Int. Conf. Acoustics,

Speech and Signal Process. (ICASSP), May 2013, pp. 4759–

4763.

[2] H. Al-Shatri and T. Weber, “Achieving the maximum sum-rate

using D.C. programming in cellular networks,” IEEE Trans.

Signal Process., vol. 60, no. 3, pp. 1331–1341, Mar. 2012.

[3] P. Weeraddana, M. Codreanu, M. Latva-aho, and

A. Ephremides, “Weighted sum-rate maximization for a

set of interfering links via branch and bound,” IEEE Trans.

Signal Process., vol. 59, no. 8, pp. 3977–3996, Aug. 2011.

[4] N. Vucic and H. Boche, “Robust QoS-constrained optimiza-

tion of downlink multiuser MISO systems,” IEEE Trans. Sig-

nal Process., vol. 57, no. 2, pp. 714–725, Feb. 2009.

[5] G. Zheng, K. K. Wong, and B. Ottersten, “Robust cogni-

tive beamforming with bounded channel uncertainties,” IEEE

Trans. Signal Process., vol. 57, no. 12, pp. 4871–4881, Dec.

2009.

[6] A. Wiesel, Y. C. Eldar, and S. Shamai, “Linear precoding via

conic optimization for fixed MIMO receivers,” IEEE Trans.

Signal Process., vol. 54, no. 1, pp. 161–176, Jan. 2006.

[7] M. Bengtsson and B. Ottersten, “Optimal downlink beamform-

ing using semidefinite optimization,” in Proc. Annual Allerton

Conf. on Commun. Control and Computing (Allerton), vol. 37,

Sep. 1999, pp. 987–996.

[8] ——, Optimal and Suboptimal Transmit Beamforming. In:

Handbook of Antennas in Wireless Communications, CRC

Press, Aug. 2001.

[9] A. B. Gershman, N. D. Sidiropoulos, S. Shahbazpanahi,

M. Bengtsson, and B. Ottersten, “Convex optimization-based

beamforming: From receive to transmit and network designs,”

IEEE Signal Process. Mag., vol. 27, no. 3, pp. 62–75, May

2010.

[10] F. Rashid-Farrokhi, L. Tassiulas, and K. J. R. Liu, “Joint opti-

mal power control and beamforming in wireless networks us-

ing antenna arrays,” IEEE Trans. Commun., vol. 46, no. 10, pp.

1313–1324, Oct. 1998.

[11] F. Rashid-Farrokhi, K. J. R. Liu, and L. Tassiulas, “Transmit

beamforming and power control for cellular wireless systems,”

IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1437–1450,

Oct. 1998.

[12] M. Schubert and H. Boche, “Solution of the multi-user down-

link beamforming problem with individual SINR constraints,”

IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 18–28, Jan. 2004.

[13] ——, “Iterative multiuser uplink and downlink beamforming

under SINR constraints,” IEEE Trans. Signal Process., vol. 53,

no. 7, pp. 2324–2334, Jul. 2005.

[14] H. Boche and M. Schubert, Duality Theory for Uplink Down-

link Multiuser Beamforming. In: Smart Antennas – State-of-

the-Art, Hindawi Publishing Corporation, Dec. 2005.

[15] D. Tse and P. Viswanath, Fundamentals of Wireless Communi-

cation. Cambridge University Press, Jul. 2005.

[16] E. Karipidis, D. Yuan, and E. G. Larsson, “Mixed-integer

linear programming framework for max-min power control

with single-stage interference cancellation,” in Proc. IEEE In-

ternational Conf. on Acoustics, Speech and Signal Process.

(ICASSP), May 2011, pp. 3448–3451.

[17] D. Yuan, V. Angelakis, L. Chen, E. Karipidis, and E. G. Lars-

son, “On optimal link activation with interference cancelation

in wireless networking,” IEEE Trans. Veh. Technol., vol. 62,

no. 2, pp. 939–945, 2013.

[18] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cam-

bridge University Press, Mar. 2004.

[19] A. d’Aspremont and S. Boyd, “Relaxations and randomized

methods for nonconvex qcqps.” [Online]. Available: http:

//www.stanford.edu/class/ee392o/relaxations.pdf

[20] D. P. Palomar and Y. C. Eldar, Convex Optimization in Sig-

nal Processing and Communications. Cambridge University

Press, Dec. 2009.

[21] Y.-W. Huang and D. P. Palomar, “Rank-constrained separable

semidefinite programming with applications to optimal beam-

forming,” IEEE Trans. Signal Process., vol. 58, no. 2, pp. 664–

678, Feb. 2010.

[22] Y. Huang and D. Palomar, “A dual perspective on separable

semidefinite programming with applications to optimal down-

link beamforming,” IEEE Trans. Signal Process., vol. 58, no. 8,

pp. 4254–4271, 2010.

[23] Z.-Q. Luo, W.-K. Ma, A.-M.-C. So, Y. Ye, and S. Zhang,

“Semidefinite relaxation of quadratic optimization problems,”

IEEE Signal Process. Mag., vol. 27, no. 3, pp. 20–34, May

2010.

[24] H. Hijazi, P. Bonami, G. Cornuejols, and A. Ouorou, “Mixed-

integer nonlinear programs featuring ”on/off” constraints,”

Computational Optimization and Applications, vol. 52, no. 2,

pp. 537–558, 2012.

[25] M. Tawarmalani and N. V. Sahinidis, “A polyhedral branch-

and-cut approach to global optimization,” Mathematical Pro-

gramming, vol. 103, no. 2, pp. 225–249, 2005.

[26] A. Schrijver, Theory of Linear and Integer Programming.

Wiley-Interscience, Jul. 1986.

[27] J. Lee and S. Leyffer, Mixed Integer Nonlinear Programming.

The IMA Volumes in Math. and its Applicaitons, Springer, Jan.

2012.

[28] T. D. Quoc and M. Diehl, “Sequential convex programming

methods for solving nonlinear optimization problems with

dc constraints.” [Online]. Available: http://arxiv.org/pdf/1107.

5841v1.pdf

[29] S. P. Boyd, “Sequential convex programming,” 2008.

[Online]. Available: http://www.stanford.edu/class/ee364b/

lectures/seq slides.pdf

[30] C. A. Floudas and P. M. Pardalos, Encyclopedia Of Optimiza-

tion, 2nd ed. Springer, Oct. 2008.

[31] R. Horst and N. V. Thoai, “DC programming: Overview,” J.

Optim. Theory Appl., vol. 103, no. 1, pp. 1–43, Oct. 1999.

[32] Y. Cheng, A. Philipp, and M. Pesavento, “Dynamic rate adap-

tation and multiuser downlink beamforming using mixed in-

teger conic programming,” in Proc. European Signal Process.

Conf. (EUSIPCO), Aug. 2012, pp. 824–828.

[33] H. Holma and A. Toskala, LTE for UMTS: OFDMA and SC-

FDMA Based Radio Access. John Wiley, Apr. 2009.

7778


