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ABSTRACT

This paper presents an approach to 3D rotation estimation using

discrete spherical harmonic oscillator transforms (discrete SHOTs).

Discrete SHOTs not only have simple and fast implementation meth-

ods but also are compatible with the existing angle estimation algo-

rithms related to spherical harmonics. Discrete SHOTs of the ro-

tated signal follow the same formulation to the Wigner-D matrix as

spherical harmonics transforms. Thus, the spherical harmonics re-

lated algorithms could be utilized to discrete SHOTs without modi-

fication. Furthermore, compared to some existing methods, our ap-

proach with discrete SHOTs exhibits higher accuracy, higher preci-

sion and improved robustness to noise if the input signal is sampled

uniformly on Cartesian grids. The phenomenon results from no in-

terpolations in discrete SHOTs.

Index Terms— Discrete spherical harmonic oscillator trans-

forms, spherical harmonic transforms, rotation estimation, Euler

angles, volume data.

1. INTRODUCTION

The 3D rotation angle estimation problem deals with two 3D ob-

jects that own identical shapes but are aligned to different directions.

Given the samples of both objects, the 3D rotation angles between

these objects are estimated. This issue plays a prominent role in pat-

tern recognition [1], computer vision [2], robotics [3], and comput-

erized tomography imaging [4] when the orientation is of interest.

Spherical harmonic transforms (SHTs) offer an approach to the

presented issue [1]. It is known that 3D rotation operations are re-

lated to the Wigner-D matrices in the spherical harmonic domain.

The angle estimation problems are converted to estimating the pa-

rameters of the Wigner-D matrices when the SHTs are given.

Discrete spherical harmonic oscillator transforms (discrete

SHOTs) provide an efficient method to analyzing the spherical

components from the Cartesian samples without interpolation [5].

Discrete SHOTs find useful applications in signal expansion, ro-

tational invariance analysis, and MRI data compression. Spherical

harmonics in the transform kernels make discrete SHOTs compatible

with the algorithms stemming from the SHT. Based on such merit,

this paper aims to combine discrete SHOTs with the angle estima-

tion algorithm and to compare the performances of the estimators

based on spherical-harmonic-related transforms.

This paper is organized as follows. Section 2 surveys the related

work and Section 3 briefly reviews the concept of 3D rotations and

Wigner-D matrices. Discrete SHOTs are introduced in Section 4. It

is proved in Section 5 that discrete SHOTs are compatible with the

existing angle estimation algorithm and the overall system diagram

is summarized in Fig. 2. Section 6 experiments on the estimation

accuracy and the noise robustness of the proposed method, compared

to some existing approaches. Section 7 concludes this paper.

2. RELATION TO PRIOR WORK

Our work considers the angle estimation problem when the input ob-

jects are sampled uniformly on the 3D Cartesian coordinates. That

is, the input samples are defined on the R
3 grid, also called the vol-

ume data, used widely in medical imaging. Most angle estimation

algorithms with the spherical harmonics work on the surface input

data [1,6,7], where the data is parametrized in terms of the polar an-

gle θ and the azimuthal angle ϕ. The surface information describes

the general outline of the object in 2D but the full energy distribution

of the object in 3D is not included.

The angle estimation algorithm proposed by Burel and Hénocq

[8] dealt with the angle estimation formulae for spherical harmonics.

SHTs were computed over (θ, ϕ) so that the input signals should be

first interpolated to spherical samples and spherical harmonics can

only be evaluated on a fixed radius.

Spherical Fourier transforms (SFTs) for rotational invariant fea-

tures were proposed by Wang et al. [9]. SFTs were defined by

a 3D transform kernel with spherical harmonics in its θ- and ϕ-

components. It was proved that SFTs are related to the Wigner-D

matrices for rotated objects and the performance would be better

than that of the spherical harmonics on a provided radius. However,

this work only addressed the rotational invariance rather than rota-

tion angles between objects. In addition, SFTs are also transforms

on the spherical coordinates so Cartesian input samples are first con-

verted to spherical samples before applying SFTs.

Presented with the above issues, the angle estimation problem

is reconsidered in this paper. For Cartesian samples, we utilized

discrete SHOTs to perform this task. Discrete SHOTs analyze the

spherical components of volume data without any coordinate conver-

sion. Besides, it will be proved that the angle estimation algorithms

proposed in [8] are compatible with discrete SHOTs, inspired by [9].

Hence, higher accuracy could be expected when discrete SHOTs and

the angle estimation formulae [8] are cascaded.

3. PRELIMINARY

3.1. The rotation operation in three-dimensions

A 3D position vector r can be specified on the Cartesian coordinate

system (x, y, z) ∈ R
3 or on the spherical coordinate system, char-
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Fig. 1. The rotation operation around (a) x-axis, (b) y-axis and (c)

z-axis by 90◦, respectively. The solid circles indicate the original

objects while the empty circles show the new objects after rotation.

acterized by the distance to the origin r, the polar angle θ, and the

azimuthal angle ϕ. These parameters are defined over r ∈ [0,∞),
θ ∈ [0, π], and ϕ ∈ [0, 2π). The coordinates are uniquely related by

x = r sin θ cosϕ, y = r sin θ sinϕ and z = r cos θ.

The 3D rotation is specified by Euler angles [10]. Any 3D ro-

tation can be decomposed into the three basic rotation operations

with respect to certain axes, as illustrated in Fig. 1. The Euler an-

gles cascade the basic rotations and parametrize the corresponding

rotation angles. In this paper, the ZYZ convention for Euler angles

is adapted. That is, the object is first rotated by α around z-axis,

then followed by a rotation β around the y-axis in the rotated coor-

dinate, and finally rotated by γ around the resultant z-axis, where

α, γ ∈ [0, 2π] and β ∈ [0, π]. The three Euler angles are described

by the operator Rα,β,γ , where the three rotation angles are specified

in order.

The Euler angles uniquely determine the 3D rotation except β =
0, π. If β = 0, the rotation is equivalent to successive Z-rotations by

α and γ so that α + γ is unique rather than α and γ. On the other

hand, β = π results in unique α− γ.

3.2. Spherical harmonic transforms and Wigner-D matrices

Spherical harmonics are defined over (θ, ϕ) as

Yℓm(θ, ϕ) = (−1)m

√

2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ) ejmϕ, (1)

where ℓ = 0, 1, 2, . . . ,−ℓ ≤ m ≤ ℓ and Pm
ℓ (·) denote the associ-

ated Legendre polynomials. Considering a surface signal f(θ, ϕ), its

spherical harmonic transforms (SHTs) Fℓ,m are the inner products

between f(θ, ϕ) and Yℓm(θ, ϕ) over the angles [8],

Fℓ,m =

∫

2π

0

∫ π

0

f(θ, ϕ)Y ∗

ℓm (θ, ϕ) sin θdθdϕ. (2)

For the Euler rotation α, β, γ on f(θ, ϕ), the SHTs after rotation

(Fℓ,m(α, β, γ)) are related to the SHTs before rotation (Fℓ,m′ ) by

Fℓ,m(α, β, γ) =
ℓ

∑

m′=−ℓ

Dℓ
m,m′ (α, β, γ)Fℓ,m′ , (3)

where −ℓ ≤ m,m′ ≤ ℓ and Dℓ
m,m′ (α, β, γ) are the elements of

the Wigner-D matrix. (3) can be rewritten as matrix operation when

{Fℓ,m}m=−ℓ,...,ℓ are modeled as a vector and Dℓ
m,m′ (α, β, γ) es-

tablish squared matrices of size 2ℓ+1, called the Wigner-D matrices.

Values and properties of the Wigner-D matrices are referred to [8].

4. DISCRETE SPHERICAL HARMONIC OSCILLATOR

TRANSFORMS

Spherical harmonic oscillator wavefunctions (SHOWs) originated

from the wavefunctions of quantum harmonic oscillator systems in

spherical coordinates [11]. Based on the system model, Schrödinger’s

equation for this system is written as

1

2

(

r2 −∇2
)

〈r|nℓm) =

(

N +
3

2

)

〈r|nℓm) , (4)

where ∇2 denotes the 3D Laplacian operator and N = 2n+ ℓ is the

order of the SHOWs. The bracket notations of SHOWs are denoted

by 〈r|nℓm), indexing by integer parameters n, ℓ, and m, where

n, ℓ = 0, 1, 2, . . . ;m = −ℓ,−ℓ + 1, . . . , ℓ − 1, ℓ. The physical

meaning of the bracket notation can be referred to [5, 10, 11] for the

interested readers. (4) is solved to be [11]

〈r|nℓm) = Nnℓr
ℓLℓ+1/2

n

(

r2
)

e−r2/2Yℓm(θ, ϕ), (5)

where Nnℓ is the normalization factor related to n, ℓ and Lα
n (·) are

the associated Laguerre polynomials. SHOWs were proved to form a

complete and orthonormal basis for L2
(

R
3
)

, the set of finite-energy

signals in 3D [11].

Alternatively, the wavefunctions for the quantum harmonic os-

cillator can also be solved on the Cartesian coordinates, i.e. solving

(4) for r = (x, y, z), yielding separable Hermite Gaussian functions

as the wavefunctions,

〈r|nxnynz〉 = Ke−
x2+y2+z2

2 Hnx(x)Hny (y)Hnz(z), (6)

where K denotes the normalization factor, Hn(·) are the Hermite

polynomials and the indices nx, ny , nz = 0, 1, 2, . . . . The order of

the separable Hermite Gaussian function is N = nx+ny +nz . It is

obvious that (6) is separable in the Cartesian coordinates. Separable

Hermite Gaussian functions are also complete and orthonormal basis

for L2
(

R
3
)

.

In [12, 13], SHOWs and separable Hermite Gaussian func-

tions are related to each other by the transformation coefficients

Cn,ℓ,m
nx,ny ,nz

〈r|nℓm) =
∑

Cn,ℓ,m
nx,ny ,nz

〈r|nxnynz〉, (7)

where the summation runs over all nx, ny , nz with nx +ny +nz =
2n+ ℓ = N . (7) implies the SHOWs of order N are the finite linear

combination of the separable Hermite Gaussian functions of order

N . Once Cn,ℓ,m
nx,ny ,nz

is computed, the SHOWs, which are spherically

symmetric, can be synthesized from the separable Hermite Gaussian

functions, which are separable in the Cartesian coordinates. In ad-

dition, the summation in (7) is finite, indicating that (7) can be eval-

uated without any truncation error. The closed-form expression for

Cn,ℓ,m
nx,ny ,nz

was studied in [12,13] while a fast computation algorithm

for Cn,ℓ,m
nx,ny ,nz

was proposed in [5].

Spherical harmonic oscillator transforms (SHOTs) are the inner

products between SHOWs and the 3D input signal f(r) [5, 11],

(nℓm|f〉 =
y

f(r) 〈r|nℓm)∗ d3
r, (8)

where d3
r = r2 sin θdrdθdϕ denotes the measure on the spherical

coordinates. Separable Hermite transforms, 〈nxnynz|f〉, are ob-

tained from the inner products between f(r) and separable Hermite

Gaussian functions 〈r|nxnynz〉 [14],

〈nxnynz|f〉 =
y

f (r) 〈r|nxnynz〉∗ d3
r, (9)
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where the measure in (9) is d3
r = dxdydz.

In [5], SHOTs and separable Hermite transforms can be related

as the finite linear combination of the transform coefficients as

(nℓm|f〉 =
∑

(

Cn,ℓ,m
nx,ny ,nz

)

∗

〈nxnynz|f〉, (10)

for all nx + ny + nz = 2n+ ℓ = N . (10) provides an approach to

discrete SHOTs:

• Discrete SHOTs can be directly computed on the Cartesian

coordinates. Although SHOTs are originally defined on the

spherical coordinates (8), it is unnecessary to convert the

Cartesian samples to the spherical samples, which would in-

troduce additional interpolation error. Instead, if the the input

signal f(r) is sampled on the Cartesian grids, the separable

Hermite transform can be applied first and then adjust the

Hermite transform coefficients with respect to Cn,ℓ,m
nx,ny ,nz

by

(10).

• The algorithm is fast. To implement discrete SHOTs, fast

algorithms for Hermite transform [15] can be utilized sepa-

rately in different dimensions. A fast algorithm for the trans-

formation coefficients Cn,ℓ,m
nx,ny ,nz

was proposed in [5] using

the fast Fourier transform algorithm. Furthermore, Cn,ℓ,m
nx,ny ,nz

are independent of f(r) so that they could be pre-computed

and accelerated by table look-up.

5. ROTATION ANGLE ESTIMATION USING DISCRETE

SPHERICAL HARMONIC OSCILLATOR TRANSFORMS

In this section, it will be shown that discrete SHOTs can be applied to

the angle estimation problem without modifications and the overall

system diagram is illustrated in Fig. 2.

To begin with, discrete SHOTs are proved to follow similar rela-

tionships with the Wigner-D matrix (3), which is inspired by [9, 16]

Theorem 1. Consider a finite energy signal f (r) ∈ L2
(

R
3
)

and

its SHOTs, (nℓm|f〉. Assume that (nℓm|f〉 (α, β, γ) represent the

SHOTs of f (Rα,β,γr), where Rα,β,γ denotes the Euler rotation

with angles α, β, and γ. Then

(nℓm|f〉 (α, β, γ) =
ℓ

∑

m′=−ℓ

Dℓ
m,m′(α, β, γ)

(

nℓm′|f
〉

, (11)

where Dℓ
m,m′(α, β, γ) denote the entries of the Wigner-D matrices,

as specified in (3).

Proof. Starting from the left-hand side of (11),

(nℓm|f〉 (α, β, γ) =
y

f (Rα,β,γr) 〈r|nℓm)∗ d3
r. (12)

Letting r
′ = Rα,β,γr = (r′, θ′, ϕ′) yields the measure d3

r = d3
r
′

and the SHOWs 〈r|nℓm) =
〈

R−1

α,β,γr
′|nℓm

)

becomes

Nnℓr
ℓLℓ+1/2

m

(

r2
)

e−r2/2Yℓm

(

R−1

α,β,γ(θ
′, ϕ′)

)

. (13)

(13) results from the radius component is invariant under the ro-

tation operation, i.e. r′ = r. Then, according to the relation-

ships between the spherical harmonics and the Wigner-D matrices,

Yℓm

(

R−1

α,β,γ(θ
′, ϕ′)

)

=
∑

(

Dℓ
m,m′

)

∗

Yℓm (θ′, ϕ′) [10], we ob-

tain

〈

R−1

α,β,γr
′|nℓm

)

=
l

∑

m=−l

(

Dℓ
m,m′

)

∗
〈

r
′|nℓm

)

. (14)

Combining (12) and (14) proves the Theorem 1.

The similar proof can be found in the appendix of [16] but the

definition of spherical harmonics in [9, 16] is slightly different from

that in this paper. Theorem 1 resembles (3) except an additional

parameter n. For a fixed n = n0, the SHOTs (n0ℓm|f〉 are related

to (n0ℓm|f〉 (α, β, γ) with Wigner-D matrices exactly. Hence, the

algorithms involving SHTs can be directly utilized to SHOTs for a

given n0.

The angle estimation algorithm we adopt here is the one in [8].

Here we choose the estimation formulae from the set E1. For the in-

put signal f(r), the Euler angles with respect to the reference signal

are

α̂f = � (n011|f〉 , (15)

β̂f = arctan

(

−
√
2 (n011|f〉 (α̂f , 0, 0)

(n010|f〉 (α̂f , 0, 0)

)

, (16)

γ̂f = � (n021|f〉
(

α̂f , β̂f , 0
)

, (17)

where the subscript f means these angles are estimated from f(r),
� denotes the angle of a complex number and the SHOTs with the

angles follow the definition in (11). (15) - (17) can be also performed

separately on another signal g(r), leading to the estimates α̂g , β̂g ,

and γ̂g , as illustrated in Fig. 2.

The Euler angles between f(r) and g(r) then will be combined

together from the estimates in the previous step. Based on the Euler

angles, we can construct the 3-by-3 rotation matrix directly, denoted

by Rα̂f ,β̂f ,γ̂f
and Rα̂g ,β̂g,γ̂g

for f(r) and g(r), respectively. The

overall rotation matrix is

Rα̂,β̂,γ̂ = R
−1

α̂g ,β̂g,γ̂g
Rα̂f ,β̂f ,γ̂f

. (18)

The final step is to estimate Euler angles α̂, β̂, and γ̂, directly from

the entries of the overall rotation matrix.

Fig. 2 serves as a summary on the angle estimation algorithm

using discrete SHOTs. First, the discrete SHOTs of the input sig-

nals f(r) and g(r) are computed with separable Hermite transforms

and fast combination coefficients. The Euler angles with respect to

the references are evaluated to have six angle estimates. Finally, es-

tablishing the rotation matrices based on the six estimates yields the

overall Euler angles α̂, β̂, γ̂.

6. EXPERIMENTAL RESULTS

In this section, the performance of the proposed algorithm is eval-

uated and compared to other schemes based on SHTs [8] and SFTs

[9]. To simulate Fig. 2, the input signal f(r) is chosen to be mixtures

of three Gaussian functions with gains 1,−0.2,−1, centers (0, 0, 1),
(1, 1, 0), (−0.5,−0.5,−1), variances σ2

x = 4, 1, 1, σ2
y = 2, 1, 1,

σ2
z = 1, 1, 1, respectively. f(r) is sampled uniformly on Cartesian

grids with the number of points Npt = 31 and the sampling interval

∆ =
√

2π/Npt. The other input signal g(r) is generated from the

rotated version of f(r), where the Euler angles α, β, γ are randomly

drawn from their domains. Having the samples of f(r) and g(r), we

apply the proposed algorithm to estimate Euler angles α̂, β̂, γ̂, com-

pared to the actual Euler angles α, β, γ. We also interchange the dis-

crete SHOT block with bilinear interpolation as well as SHTs/SFTs.

The parameter n0 = 1 and the radius evaluating SHTs is 1.

The Monte-Carlo test is repeated 1000 times and the relation-

ships between the ground truth α, β, γ and the estimates α̂, β̂, γ̂ are

shown in Fig. 3, where α+γ and β are selected. All methods exhibit
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Fig. 2. The overall system diagram of 3D rotation estimation using the discrete SHOTs.
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Fig. 3. The scatter plots show the correlations between the estimated

Euler angles versus the actual Euler angles when (a), (d) SHTs, (b),

(e) SFTs, and (c), (f) SHOTs are utilized. The 1000 blue dots rep-

resent different tests of the proposed algorithm. The red dashed line

indicates the theoretical curve of the estimators. The median abso-

lute deviations (MADs) in degrees are listed on the top of each plot

to show the dispersion of the dots with respect to the theoretical line.

positive correlation and SHOTs achieve the best fit with the theoreti-

cal curve and own the smallest dispersion. To measure the dispersion

robustly, the median absolute deviation (MAD)

MAD(x) = median (|xi −median(x)|) , (19)

is computed over differences between the actual angles and their es-

timates. From Fig. 3, these MADs prove our algorithm not only

achieves high accuracy but also good precision.

The next experiment simulates the noise robustness in our sce-

nario. We repeated 1000 runs with additive white Gaussian noise

and then evaluated MADs with respect to the cascaded sequences

of α̂ + γ̂ and β̂, as listed in Fig. 4. Note that the MADs in Fig. 3

can be considered the noise-free MADs as the lower bounds of the

curves in Fig. 4. First of all, the MADs of SHTs and SFTs become

saturated for the high-SNR case. The MADs are approximately 10◦

and 7◦ for SHTs and SFTs, respectively, and those values are con-

sistent with the MADs without noise, as displayed in Fig. 3(a,b,d,e).

Secondly, higher-order interpolation provides limited improvement

on the performance. For instance, compared to the bilinear interpo-

lation and the bicubic interpolation, the MADs of SHTs are lowered

by only 0.6◦ while those of SFTs are decreased by 0.1◦. However,

the SHOT does not suffer from those disadvantages. In Fig. 4, the

curve of SHOTs continuously decreases as the SNR increases, rather

than the saturation phenomenon of the other two methods. In fact,

for the SNR higher than 30dB, the MADs for SHOTs become lower

than 0.1◦ and will reach the level of
(

10−9
)

◦

eventually, as referred

to Fig. 3(c,f).
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Fig. 4. The noise robustness of the proposed angle estimation algo-

rithm. Each point is obtained from 1000 Monte-Carlo tests of Fig.

2 with random Euler angles and the additive white Gaussian noise.

The bilinear/bicubic interpolations are used in SHTs and SFTs.

Fig. 4 indicates that interpolations introduce interpolation error

to the system. The interpolation error depends on the interpolation

methods and dominates the performance when the external noise di-

minishes. Discrete SHOTs, however, avoid the interpolation error

and hence exhibit better performance than the other two methods.

In addition, our simulation considers Cartesian samples of ban-

dlimited signals, which are consistent with Fig. 4(a) in [5]. If non-

bandlimited signals or spherical samples are applied to our algo-

rithm, the overall performance would be similar to that of SHTs or

SFTs, from the rotational invariance experiment in Fig. 4(b-d) of [5].

The complexity of Fig. 2 is governed by the transforms since an-

gle estimation blocks are independent of Npt. SHTs take C1N
2
pt steps

for interpolation and approximately C2N
2
pt operations for 2D sepa-

rable transforms, where C1 depends on interpolation methods and

C2 denotes the number of Fℓ,m needed in (15)-(17). The complex-

ity for SFTs is about (C1 +C2)N
3
pt. Discrete SHOTs require C3N

3
pt

operations in separable Hermite transforms and a fixed number of

operations in transformation coefficients, where C3 is the number of

separable Hermite transforms required in (15)-(17).

7. CONCLUSION

A novel angle estimation algorithm using discrete SHOTs was pre-

sented in this paper. We showed that discrete SHOTs not only are

compatible with the SHT-based algorithms, but also outperform

those utilizing SHTs and SFTs. The advantages of discrete SHOTs

result from direct signal analysis on the Cartesian coordinates. Our

work could be applied to 3D object alignment, registration, and

retrieval for volume data with few modification to the existing

framework and might have better performance.

777



8. REFERENCES

[1] M. Kazhdan, “An Approximate and Efficient Method for Op-

timal Rotation Alignment of 3D Models,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 29, no. 7, pp. 1221–1229, 2007.
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