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ABSTRACT

In this paper, we consider a nonsmooth convex problem with linear
coupling constraints. Problems of this form arise in many modern
large-scale signal processing applications including the provision of
smart grid networks. In this work, we propose a new class of al-
gorithms called the block coordinate descent method of multiplier-
s (BCDMM) to solve this family of problems. The BCDMM is a
primal-dual type of algorithm. It optimizes an (approximate) aug-
mented Lagrangian of the original problem one block variable per
iteration, followed by a gradient update for the dual variable. We
show that under certain regularity conditions, and when the order for
which the block variables are either updated in a deterministic or a
random fashion, the BCDMM converges to the set of optimal solu-
tions. The effectiveness of the algorithm is illustrated using large-
scale basis pursuit and smart grid problems.

1. INTRODUCTION

Consider the problem of minimizing a convex function f(x) subject
to linear equality constraints:

min f(x) := g (x1, · · · , xK) +
∑K

k=1 hk(xk)

subject to E1x1 + E2x2 + · · ·+ EKxK = q,
xk ∈ Xk, k = 1, 2, ..., K,

(1.1)

where g(·) is a smooth convex function; hk is a nonsmooth con-
vex function; x = (xT

1 , ..., x
T
K)T ∈ �n is a partition of the op-

timization variable x, xk ∈ �nk ; X =
∏K

k=1 Xk is the feasi-
ble set for x; q ∈ �m is a vector. Let E := (E1, · · · , EK) and
h(x) :=

∑K
k=1 hk(xk).

Many problems arise in modern large-scale signal processing,
machine learning and smart grid systems can be formulated into the
form (1.1). A well-known example is the basis pursuit (BP) problem,
which solves the following nonsmooth problem [1]

min
x

‖x‖1 s.t. Ex = q, x ∈ X. (1.2)

One important application of this model is in compressive sensing,
where a sparse signal x needs to be recovered using a small number
of observations q (i.e., m � n) [1]. Let us partition x by x =
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[xT
1 , · · · , xT

K ]T where xk ∈ �nk , and partitionE accordingly. Then
the BP problem can be written in the form of (1.1)

min
x

K∑
k=1

‖xk‖1 s.t.

K∑
k=1

Ekxk = q, xk ∈ Xk, ∀ k. (1.3)

The second example has to do with the design of the smart grid
system. Consider a power grid system in which a utility company
bids the electricity from the power market and serves a neighborhood
with K customers. The total cost for the utility includes the bidding
cost in a wholesale day-ahead market and a real-time market. In
the envisioned smart grid system, the utility will have the ability to
control the power consumption of some appliances (e.g., controlling
the charging rate of electrical vehicles) in a way to minimize its total
cost. This problem, known as the demand response (DR) control
problem, is central to the success of the smart grid system [2, 3, 4].

Let p�, � = 1, · · · , L, denote the bids in a day-ahead market
for a period L. Let Ψkxk denote the load profile of a customer
k = 1, · · · , K, where xk ∈ �nk are some control variables for
the equipments of customer k, and Ψk ∈ �RL×nk contains the
information related to the appliance load model [5]. The retailer
aims at minimizing the bidding cost as well as the cost incurred by
power imbalance in the next day [2, 3, 4]

min
{xk},p

Cp

[( K∑
k=1

Ψkxk − p
)+]

+ Cs

[(
p−

K∑
k=1

Ψkxk

)+]
+ Cd(p)

s.t. xk ∈ Xk, k = 1, · · · , K, x ≥ 0, p ≥ 0 (1.4)

where Cp(·) and Cs(·) are increasing functions which model the
cost incurred by insufficient and excessive power bids, respectively;
Cd(·) represents the bidding cost function; (x)+ := max{x, 0};
Xk is some compact set; see [3]. Upon introducing a new variable

z =
(∑K

k=1 Ψkxk − p
)+

, the above problem can be equivalently

transformed into the form of (1.1):

min
{xk},p,z

Cp(z) + Cs

(
z+ p−

K∑
k=1

Ψkxk

)
+ Cd(p) (1.5)

s.t.
K∑

k=1

Ψkxk − p− z ≤ 0, z ≥ 0, p ≥ 0, xk ∈ Xk, ∀ k.

The third example arises in optimizing the cognitive radio net-
work (CRN). Consider a network with K secondary users (SUs) and
a single secondary base station (SBS) operating on M parallel fre-
quency tones. The SUs are interested in transmitting their messages
to the SBS. Let smk denote user k’s transmit power on mth channel;
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let hm
k denote the channel between user k and the SBS on tone m;

let Pk denote SU k’s total power budget. Also suppose that there
are L primary users (PU) in the system, and let gmk� denote the chan-
nel between the kth SU to the �th PU. The secondary network aims
at maximizing the system throughput, subject to the constraint that
certain interference temperature (IT) constraints measured at the re-
ceivers of the PUs are not violated [6, 7]:

max
{sm

k
}

M∑
m=1

log

(
1 +

K∑
k=1

|hm
k |2smk

)
(1.6)

s.t. smk ≥ 0,
M∑

m=1

smk ≤ Pk,
K∑

k=1

|gmk�|2smk ≤ Im� , ∀ �, k, m

where Im� ≥ 0 denote the IT constraint for PU � on tone m. Clearly
this problem is also in the form of (1.1).

2. LITERATURE REVIEW

In the absence of the linear coupling constraints, a well known tech-
nique for solving (1.1) is to use the so-called block coordinate de-
scent (BCD) method whereby, at every iteration, the following sub-
problem is solved for a single block of variables, while the remaining
blocks are held fixed:

min
xk∈Xk

g(xr
1, . . . , x

r
k−1, xk, x

r−1
k+1, . . . , x

r−1
K ) + hk(xk). (2.7)

Since each step involves solving a simple subproblem of small size,
the BCD method can be quite effective for solving large-scale prob-
lems; see e.g., [8, 9, 10, 11] for various applications in statistics, sig-
nal processing and machine learning. The existing theoretical analy-
sis of the BCD method requires the uniqueness of the minimizer for
each subproblem (2.7), or the quasi convexity of f [12, 13, 14, 15].
When problem (2.7) is not easily solvable, a popular approach is to
solve an approximated version of problem (2.7), yielding the block
coordinate gradient decent (BCGD) algorithm, or the block coordi-
nate proximal gradient (BCPG) algorithm in the presence of nons-
mooth function h [16, 17, 10, 18, 19].

When the linear coupling constraint is present, it is well known
that the BCD-type algorithm may fail to find any (local) optimal
solution [20]. A popular algorithm for solving this type of problem
is the so-called alternating direction method of multipliers (ADMM)
[21, 22]. In the ADMM method, instead of maintaining feasibility
all the time, the constraint Ex = q is dualized using the Lagrange
multiplier y and a quadratic penalty term is added. The resulting
augmented Lagrangian function is of the form:

L(x; y) = f(x) + 〈y, q − Ex〉+ ρ

2
‖q − Ex‖2, (2.8)

where ρ > 0 is a constant, and 〈·, ·〉 denotes the inner product opera-
tor. The ADMM updates the primal block variables x1, . . . , xK in a
block coordinate manner to minimize L(x; y), which often leads to
simple subproblems with closed form solutions. These updates are
followed by a gradient ascent update of the dual variable y.

Unfortunately, neither BCD nor ADMM can be used to solve
problem (1.1). In fact, due to its multi-block structure as well as the
variable coupling in both the objective and the constraints, this prob-
lem cannot be handled by the existing methods for big data including
SpaRSA [23], FPC-BB [24], FISTA [25] and ALM [26]. The main
contribution of this paper is to propose and analyze a block coordi-
nate descent method of multipliers (BCDMM) and its randomized
version that can solve problem (1.1) efficiently. The proposed algo-
rithm is flexible, because the primal per-block problem can be solved

inexactly, and this allows one to perform simple gradient or proximal
gradient step for difficult subproblems.

3. THE BCDMM ALGORITHM

In its basic form, the BCDMM algorithm optimizes certain upper
bound of the augmented Lagrangian (2.8) one block variable at a
time, followed by a gradient type update for the dual variable. In
particular, at iteration r+1, the block variable k is updated by solv-
ing the following subproblem

min
xk∈Xk

uk

(
xk; x

r+1
1 , · · · , xr+1

k−1, x
r
k, · · · , xr

K

)
+ 〈yr+1, q −Ekxk〉+ hk(xk) (3.9)

where uk(·;xr+1
1 , · · · , xr+1

k−1, x
r
k, · · · , xr

K) is certain upper bound
of g(x) + ρ

2
‖q − Ex‖2 at a given iterate. To simplify notations, let

us define a new set of auxiliary variables

wr
k = [xr

1, · · · , xr
k−1, x

r−1
k , xr−1

k+1, · · · , xr−1
K ], k = 1, · · · ,K,

wr
K+1 = xr, wr

1 = xr−1.

The BCDMM algorithm is described in the following table.

The BCDMM Algorithm

At each iteration r ≥ 1:⎧⎪⎪⎨
⎪⎪⎩

yr+1 = yr + αr(q − Exr) = yr + αr

(
q −

K∑
k=1

Ekx
r
k

)
,

xr+1
k = arg min

xk∈Xk

uk(xk;w
r+1
k )− 〈yr+1, Ekxk〉+ hk(xk), ∀ k

where αr > 0 is the step size for the dual update.

In this paper, we also consider a randomized version of the BCD-
MM algorithm, in each iteration of which a single block of primal or
dual variable is randomly picked to update.

The R-BCDMM Algorithm

Select a vector {pk > 0}Kk=0 such that
∑K

k=0 pk = 1; At iteration
t ≥ 1, pick k ∈ {0, · · · ,K} with probability pk and

If k = 0
yt+1 = yt + αt(q − Ext),

xt+1
k = xt

k, k = 1, · · · ,K.

Else If k ∈ {1, · · · ,K}

xt+1
k = argminxk∈Xk uk(xk;x

t)− 〈yr, Ekxk〉+ hk(xk),

xt+1
j = xt

j , ∀ j �= k, yt+1 = yt.
End

where αt > 0 is the step size for the dual update.

As explained in [11, 27], the randomized version of the BCD-type
of algorithm is useful under many practical scenarios, for example
when not all data is available at all times. Note that here we have
used the index “t” to differentiate the iteration of R-BCDMM with
that of the BCDMM. The reason is that in R-BCDMM, at each iter-
ation only a single block variable (primal or dual) is updated, while
in BCDMM all primal and dual variables are updated once.
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4. CONVERGENCE ANALYSIS

4.1. Main Assumptions

Suppose f is a closed proper convex function in �Rn. Let dom f
denote the effective domain of f and let int(dom f) denote the in-
terior of dom f . Let x−k (and similarly E−k) denote the vector
x with xk removed. We make the following standing assumptions
regarding the problem (1.1):

Assumption A.

(a) Problem (1.1) is convex, its global minimum is attained and
so is its dual optimal value. The intersectionX∩int(dom f)∩
{x | Ex = q} is nonempty.

(b) The function g(x) can be decomposed as g(x) = �(Ax) +
〈x, b〉, where �(·) is a strictly convex and continuously differ-
entiable function on int(dom �), and A is some given matrix
(not necessarily full column rank).
Each nonsmooth function hk, if present, takes the form

hk(xk) = λk‖xk‖1 +
∑
J

wJ‖xk,J‖2,

where xk = (· · · , xk,J , · · · ) is a partition of xk with J being
the partition index; λk ≥ 0 and wJ ≥ 0 are some constants.

(c) The feasible sets Xk, k = 1, · · · , K are compact polyhedral
sets, and are given by Xk := {xk | Ckxk ≥ ck}, for some
matrix Ck ∈ �mk×nk and ck ∈ �mk .

Next we make the following assumptions regarding the approx-
imation function uk(·; ·) in (3.9).

Assumption B.

(a) uk(xk;x) = g(x) + ρ
2
‖Ex− q‖2, ∀ x ∈ X, ∀ k.

(b) uk(vk;x) ≥ g(vk, x−k)+
ρ
2
‖Ekvk−q+E−kx−k‖2, ∀ vk ∈

Xk, ∀ x ∈ X, ∀ k.

(c) ∇uk(xk;x)=∇k

(
g(x) + ρ

2
‖Ex− q‖2), ∀ k, ∀ x ∈ X .

(d) For any given x, uk(vk;x) is continuous in vk and x; More-
over, it is strongly convex in vk:

uk(vk;x) ≥ uk(v̂k;x) + 〈∇uk(v̂k;x), vk − v̂k〉
+

γk
2
‖vk − v̂k‖2, ∀ vk, v̂k ∈ Xk, ∀ x ∈ X.

where γk is independent of the choice of x.

(e) For given x, uk(vk;x) has Lipschitz continuous gradient:

‖∇uk(vk;x)−∇uk(v̂k;x)‖ ≤ Lk‖vk − v̂k‖,
∀ v̂k, vk ∈ Xk, ∀ k, ∀ x ∈ X, (4.10)

where Lk > 0 is some constant.

Below we give a few remarks about the assumptions made above.

Remark 4.1 The form of g(·) assumed in Assumption A(b) is
fairly general. For example it includes the cases like g(·) =∑K

k=1 �k(Akxk), or g(·) = �(
∑K

k=1 Akxk), or the combina-
tion of these two, where �k(·)’s are strictly convex functions and
Ak’s are matrices not necessarily with full rank. Moreover, since
the matrix A is not required to have full rank, g(x) (hence f(x)) is
not necessarily strongly convex with respect to x. Note that all three
examples mentioned in Section 1 satisfy Assumption A(b). Moreover,
this assumption requires that the nonsmooth function hk(·) is in the
form of mixed �1 and �2 norm.

Remark 4.2 Assumption B indicates that for any x, each uk(·; x) is
a locally tight upper bound for g(x)+ ρ

2
‖q−Ex‖2 (the latter func-

tion itself satisfies Assumption B trivially). In many practical ap-
plications especially for nonsmooth problems, optimizing such func-
tions often leads to much simpler subproblems than working directly
with the original function; see e.g., [8, 26, 28, 29]. As an example,
suppose the augmented Lagrangian is given by:

L(x; y) =
K∑

k=1

‖xk‖2 + 〈y, q − Ax〉+ ρ‖Ax− q‖2.

Then at (r + 1)-th iteration, the subproblem for xk is given by

xr+1
k = arg min

xk∈Xk

‖xk‖2 + 〈yr+1, q−Akxk〉+ ρ‖Akxk − dk‖2,

and this problem does not have closed form solution. A well-known
strategy is to perform a proximal gradient step [30], that is, to solve
the following approximated problem instead

min
xk∈Xk

‖xk‖2 + 〈yr+1, q −Akxk〉+ 〈2ρAT
k (Akx

r
k − dk), xk〉

+
τ

2
‖xk − xr

k‖2 (4.11)

for some constant dk = q −∑j<k Ajx
r+1
j −∑j>k Ajx

r
j . This

problem readily admits a closed form solution; see e.g. [31, 17].
Moreover, when choosing τ ≥ ‖AT

k Ak‖, the strongly convex func-
tion 〈2ρAT

k (Akx
r
k − dk), xk〉+ τ

2
‖xk − xr

k‖2 is an approximation
function that satisfies Assumption B (up to some constant).

Remark 4.3 The strong convexity assumption for the approxima-
tion function uk(·; ·) in B(d) is quite mild, see the examples given in
the previous remark. This assumption ensures the iterates of (ran-
domized) BCDMM are well defined.
Now we are ready to present the main convergence result for the
BCDMM and R-BCDMM.

Theorem 4.1 Suppose Assumptions A and B hold. Suppose that the
sequence of stepsizes {αr}r satisfies

∞∑
r=1

αr = ∞, lim
r

αr = 0. (4.12)

Then we have the following:

1. For the BCDMM, the sequence of constraint violations
{‖Exr − q‖} converges to zero. Further, every limit point of
{xr, yr} is a primal-dual optimal solution for problem (1.1).

2. For the R-BCDMM, the sequence of the constraint violation
{‖Ext − q‖} converges to zero with probability 1 (w.p.1).
Further, every limit point of {xt, yt} is a primal-dual optimal
solution for problem (1.1) w.p.1.

This result shows that by properly choosing the stepsizes, the conver-
gence of (R-)BCDMM can be guaranteed, regardless of the number
of primal blocks. Due to space limitations, we refer the readers to
[32] for detailed proofs.

5. SIMULATION RESULTS

In this section, we present numerical results to demonstrate the ef-
fectiveness of BCDMM for the BP and the DR problem.

Let us first consider the BP problem (1.3), and fix each block
variable xk to be a scalar. Then the primal subproblem for BCDMM
at r-th iteration for k-th variable is given by

min
xk

1

ρ‖ek‖2 |xk|+ 1

2

(
xk +

eTk c
r
k

‖ek‖2
)2

(5.13)
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Table 1. Average #MVM performance for different algorithms.
BCDMM PALM DALM FISTA

#MVM 226 948 840 768

Table 2. Relative error performance of BCDMM for large-scale problem.
# of iterations Exp. 1 Exp. 2

1 1 1
5 0.35 0.35
10 0.0012 0.16
15 7e-6 2e-3
20 N/A 1e-5
25 N/A 8e-7

where ek is the k-th column of E, crk = wr
−k + yr+1/ρ − q. This

problem can be solved in closed-form by the soft-thresholding op-
erator. We randomly generate the matrix E ∈ �m×n and the true
solutions x̄ with each of their nonzero component following stan-
dard Gaussian distribution. We let E be a dense matrix, and x̄ be
a sparse vector, with each component having probability p ∈ (0, 1)
to be nonzero (see [33] for details). We normalize the columns of
E to have norm 1. The stepsize in BCDMM is given as follows:
ρ = 10 × m/‖q‖1, αr = ρ 10+1√

r+10
. The BCDMM algorithm is

compared with a number of well-known algorithms for BP such as
DALM, PALM, FISTA, etc., see [33] for detailed review and imple-
mentation of these algorithms.

We first consider a relatively small problem with n = 10000
and m = 3000 and p = 0.06. The stopping criteria for all the
algorithms is that either the iteration counter is larger than 1000, or
the relative error ‖xr − x̄‖/‖x̄‖ ≤ 10−10. In Table 5, we show the
averaged performance (over 100 problem realizations) for different
algorithms. For a fair comparison of the computational cost, the
algorithms are compared according to the number of matrix-vector
multiplications, denoted by #MVM, which includes both Ex and
ET y. Clearly the BCDMM approach exhibits superior performance
over all other algorithms.

It is worth mentioning that except for BCDMM, all the rest of
the algorithms suffer from pitfalls that prevent them from solving
really large problems. For example the PALM require the knowl-
edge of ρ(ETE) (the largest eigenvalue of ETE), the version of
DALM with convergence guarantee requires the inversion of EET

[34], both of which are difficult operations when E is large (say
when n and m are larger than 106). The FISTA algorithm either
needs ρ(ETE), or is required to perform backtrack line search with-
in each iteration [25], both of which are again difficult to implement
for large size problems. In contrast, each step of the BCDMM algo-
rithm is simple and has closed-form solution, which makes it easily
scalable for large problems. We have also tested the BCDMM on
two large experiments 1: experiment 1 with m = 106, n = 103

and ‖x̄‖0 = 28; experiment 2 with n = 106, m = 2 × 103 and
‖x̄‖0 = 82. It takes 7 GB and 14 GB of memory space to store the
data of these problems, respectively. For both problems, the BCD-
MM performs quite well: for the first (resp. the second) experiment
it takes around 15 iterations and 60 seconds (resp. 25 iterations and
200 seconds) to reduce the relative error to about 10−6.

Let us now test BCDMM on the DR problem described in (1.5).
Suppose that there are up to 3000 users in the system with each
user having 4 controllable appliances; also assume that each day is
divided into 96 time periods. That is, m = 96 and nk = 96 × 4.
The load model is generated according to [5]. The interested readers
are referred to [3] for detailed modeling on the construction of the

1We use a PC with 128 GB RAM and 24 Intel Xeon 2.67 GHz cores.
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Fig. 1. Relative error performance for all algorithms on a small-size prob-
lem. n = 10000, m = 3000, p = 0.06. The relative error is given by
= ‖x̄− xr‖/‖x̄‖.

Algorithm K=50 K=100 K=500 K=1000 K=3000
BCDMM 0.4860 0.8099 3.3964 4.648 14.827

SG 0.9519 1.5630 9.4835 16.595 60.896
Unscheduled 1.0404 1.7940 7.5749 14.389 45.900

Table 3. Total Cost Performance of Different Approaches (103 unit price).

matrices {Ψk}Kk=1. For simplicity, we assume that the day-ahead
bidding is completed, with power supply p determined by an average
of 5 random generation of all the uncontrolled consumptions of the
users. This reduces problem (1.5) to having only {xk}Kk=1 and z as
optimization variables. Additionally, we let Cp(·) and Cs(·) be the
quadratic costs.

0 5 10 15 20 25
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Unscheduled load
Scheduled load BCDMM
Scheduled load SG

Fig. 2. The unscheduled consumption, power supply and the scheduled
consumption by BCDMM and subgradient algorithm.

We compare our proposed algorithm with the dual subgradient
(SG) algorithm [3]2. We let both algorithms run 200 iterations. Note
that each iteration SG is computationally more expensive, as it in-
volves in solving a linear program [3], while each iteration of the
BCDMM is again in closed-form. In Table 3, we compare the to-
tal costs incurred by the BCDMM and SG with that of unscheduled
loads. Clearly the BCDMM is able to achieve about 50% of cost
reduction, while the SG algorithm fails to converge within 200 iter-
ations, thus results in significantly larger costs. In Fig. 2, we show
the unscheduled consumption, power supply and the scheduled con-
sumption for BCDMM and SG. The BCDMM can track the supply
curve well, while the SG fails to do so within 200 iterations.

2Note that here the dual SG is applied to the DR with quadratic costs,
which is different than [3], where it is applied to a problem with linear costs.
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