
KERNEL SELECTION FOR POWER MARKET INFERENCE
VIA BLOCK SUCCESSIVE UPPER BOUND MINIMIZATION

Vassilis Kekatos, Yu Zhang, and Georgios Giannakis

Digital Technology Center and ECE Dept., University of Minnesota
Minneapolis, MN 55455, USA

Emails: {kekatos,zhan1220,georgios}@umn.edu

ABSTRACT
Advanced data analytics are undoubtedly needed to enable
the envisioned smart grid functionalities. Towards that goal,
modern statistical learning tools are developed for day-ahead
electricity market inference. Congestion patterns are mod-
eled as rank-one components in the matrix of spatio-temporal
prices. The new kernel-based predictor is regularized by the
square root of the nuclear norm of the sought matrix. Such
a regularizer not only promotes low-rank solutions, but it
also facilitates a systematic kernel selection methodology.
The non-convex optimization problem involved is efficiently
driven to a stationary point following a block successive up-
per bound minimization approach. Numerical tests on real
high-dimensional market data corroborate the interpretative
merits and the computational efficiency of the novel method.

Index Terms— Kernel learning; nuclear norm; multi-
kernel selection; block successive upper bound minimization.

1. INTRODUCTION

In deregulated electricity markets, an independent system
operator (ISO) collects bids submitted by generators and
utilities [1]. Compliant with network and reliability con-
straints, the grid is dispatched in the most economical way.
Load patterns and congested transmission lines lead to
spatiotemporally-varying energy prices, known as locational
marginal prices (LMPs) [2], [3]. Electricity price inference
is an important decision making tool for market participants.
Further, ISOs recently broadcast price forecasts to proac-
tively relieve congestion [4], and system planners use LMP
analytics to identify transmission corridors [5].

Schemes for predicting electricity prices proposed so
far include time-series analysis approaches based on auto-
regressive (integrated) moving average models and their gen-
eralizations; see e.g., [6], [7]. However, these models are
confined to linear predictors, whereas markets involve gen-
erally nonlinear dependencies. To account for nonlinearities,
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artificial intelligence approaches, such as fuzzy systems and
neural networks, have been also investigated [8], [9], [10],
[11]. In [12], market clearance is assumed to be solved as a
quadratic program and forecasts are extracted based on the
most probable outage combinations. Reviews on electricity
price forecasting can be found in [13] and [14].

Different from existing approaches where predictors are
trained on a per-LMP basis, a grid-wide kernel-based learning
approach is pursued here. Leveraging the price dependence
across nodes and hours, market forecasting is cast as a collab-
orative filtering task [15], [16]. To promote low-rank models,
a novel regularizer based on the square root of the nuclear
norm of the involved price matrix is introduced. Our analytic
results extend kernel selection tools to low-rank multi-task
models [17], [18]. The final contribution is an efficient algo-
rithm for solving the non-convex problem involved. Distinct
from [19], the solver here minimizes an upper bound of the
per block minimizations, hence allowing inference based on
market data of even higher dimensions. Forecasting results
on the Midwest ISO (MISO) market corroborate our findings.

Notation. Lower- (upper-) case boldface letters denote
column vectors (matrices); calligraphic letters stand for sets.
Symbols A> and Tr(A) denote the transpose and the trace of
A, respectively. The `2-norm of a vector is denoted by ‖a‖2,
‖A‖F is the Frobenius matrix norm, and SN++ is the set of
N ×N positive definite matrices.

2. PRELIMINARIES ON KERNEL LEARNING

Given pairs {(xn, zn)}Nn=1 of features xn drawn from a
space X and target values zn ∈ R; kernel-based learning
aims finding a function f : X → R belonging to the space
HK := {f(x) =

∑∞
n=1K(x, xn)an, an ∈ R} defined by

a kernel K : X × X → R. When K(·, ·) is a symmetric
positive definite function, then HK becomes a reproduc-
ing kernel Hilbert space (RKHS) equipped with the norm
‖f‖2K :=

∑∞
n=1

∑∞
m=1K(xn, xm)anam <∞ [20].

The sought f can be found via the regularization [21], [22]

f̂K := arg min
f∈HK

N∑
n=1

(zn − f(xn))2 + µ‖f‖K. (1)
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The regularizer ‖f‖K constraints f ∈ HK and facilitates gen-
eralization over unseen data. Balancing between the regular-
izer and the least-squares (LS) data fit is controlled by µ > 0,
a parameter typically tuned via cross-validation [21].

According to the Representer’s Theorem, f̂K admits
the form f̂K(x) =

∑N
n=1K(x, xn)ân for some â :=

[â1 · · · âN ]> [16], [21]. Thus, the functional optimization
in (1) is equivalent to the vector optimization

â := arg min
a
‖z−Ka‖22 + µ‖a‖K (2)

where z := [z1 · · · zN ]>, K ∈ SN++ is the kernel matrix hav-
ing entries [K]n,m := K(xn, xm), and ‖a‖2K := a>Ka.

The designer is often given candidate kernels {Kl}Ll=1

and would like to determine which of them provide better in-
ference results. Towards that goal, let the kernel functionK in
(1) be defined as the convex combination

∑L
l=1Klθl for some

θl ≥ 0 and
∑L
l=1 θl = 1. Given {(xn, zn)} and {Kl}, ker-

nels {Kl} can be selected by minimizing (1) over θl’s. This
double minimization turns out to be equivalent to [23]

{âl} := arg min
{al}

‖z−
L∑
l=1

Klal‖22 + µ

L∑
l=1

‖al‖Kl
. (3)

Problem (3) is known to yield many zero âl’s, hence featur-
ing kernel selection. Based on kernel learning, novel models
pertinent to power market inference are developed next.

3. PROBLEM FORMULATION

Consider an hourly whole-sale electricity market over a set
N of N pricing nodes indexed by n. The market is consid-
ered to be stationary over the T most recent hours comprising
the set T . In a day-ahead market, locational marginal prices
(LMPs) correspond to the cost of electricity at each node and
over one-hour periods for the following day [24]. Viewing
market forecasting as an inference problem, hourly LMPs are
the target variables. Explanatory variables (features) can be
any relevant data: Weather forecasts and load estimates could
be utilized as time-related features. The pricing node type
(e.g., generator or load) and its geographical location could
be node-related features.

Kernel-based predictors could be obviously built on
a per-node basis. But locational prices are not indepen-
dent: they are determined over a transmission grid hav-
ing capacity and reliability limitations [2], [3]. Leveraging
this network-imposed dependence, the price at node n and
time t denoted by p(n, t) could be thought of as a function
p : N × T → R to be inferred. Rigorously, we postulate that
p(n, t) belongs to the RKHS P defined by the product kernel
K⊗ ((n, t), (n′, t′)) := K(n, n′)G(t, t′), where K and G
are kernels evaluated over nodes and hours, respectively. All

functions in this RKHS can be expressed as [20], [15]

P =

{
p(n, t) =

R∑
r=1

fr(n)gr(t), fr ∈ HK , gr ∈ HG

}
(4)

whereHK andHG are the RKHSs defined respectively by K
and G; and R is possibly infinite.

The key presumption here is that p(n, t) is practically the
superposition of few pr(n, t) := fr(n)gr(t). At a specific t,
usually only a few transmission lines are congested [2], [3].
Each fr corresponds to the pricing pattern observed whenever
a specific congestion scenario occurs. Yet spatial effects are
modulated by time. For example, congestion typically occurs
during peak demand or high-wind periods. These specifica-
tions not only justify using the product kernel K⊗, but they
also hint at a relatively small R in (4).

To facilitate parsimonious modeling of p(n, t) using a few
pr(n, t)’s, instead of regularizing by ‖p‖K⊗ , the trace norm
‖p‖∗ is used instead [15], [19]. Upon arranging observed
prices and p(n, t)’s in the N × T matrices Z and P, respec-
tively, market inference is cast as

min
p∈P

‖Z−P‖2F + µ
√
‖p‖∗. (5)

Regularizing by ‖p‖∗ is known to favor low-rank mod-
els [15]. Actually, when N and T are Euclidean spaces,
K(n, n′) = δ(n − n′) and G(t, t′) = δ(t − t′) where δ(·)
is the Kronecker delta function; then p(n, t) is the (n, t)-th
entry of P and ‖p‖∗ is simply its nuclear norm ‖P‖∗, i.e., the
sum of its singular values [22]. Employing the square root of
‖p‖∗ in (5) not only inherits this low-rank promoting property,
but it facilitates kernel selection and efficient algorithms [19].

Learning the kernels K and G is accomplished next
by generalizing the multi-kernel learning approach of [17]
to the function regularization in (5). In detail, given two
sets of candidate kernels, {Kl}Ll=1 and {Gm}Mm=1, con-
sider the kernel spaces constructed as the convex hulls, i.e.,
K := conv

(
{Kl}Ll=1

)
and G := conv

(
{Gm}Mm=1

)
. Mini-

mizing the outcome of (5) over K and G – essentially over
the weights of the two convex combinations – provides a
disciplined kernel design methodology. The following result
asserts that this optimization can be accomplished without
even finding the optimal weights.

Theorem 1 ([19]). Consider the function space and the ker-
nel spaces K and G. Solving the regularization problem

min
K,G

min
p∈P

‖Z−P‖2F + µ
√
‖p‖∗. (6)

is equivalent to solving

min
p∈P′

‖Z−P‖2F+µ

L∑
l=1

√√√√ R∑
r=1

‖flr‖2Kl
+µ

M∑
m=1

√√√√ R∑
r=1

‖gmr‖2Gm

(7)
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over P ′ :=
{
p(n, t) =

∑R
r=1

(∑L
l=1 flr

)(∑M
m=1 gmr

)
:

flr ∈ HKl
, gmr ∈ HGm}, where {HKl

} and {HGm} are the
function spaces defined by {Kl} and {Gm}, respectively.

Practically solving (7) necessitates transforming the func-
tional to a vector minimization, as pursued next. Note that
minimizing (7) over a specific flr is actually a functional min-
imization regularized by an increasing function of ‖flr‖Kl

.
Hence, according to the Representer’s Theorem, each one of
the LR functions flr minimizing (7) can be expressed as

flr(n) =

N∑
n′=1

Kl(n, n
′)βlr,n′ . (8)

Upon definining βlr := [βlr,1 · · · βlr,N ]>, and flr :=
[flr(1) · · · flr(N)]>, it holds that flr = Klβlr, where
Kl ∈ SN++ is the node kernel matrix whose (n, n′)-th entry is
Kl(n, n

′). Likewise, each gmr minimizing (7) is written as

gmr(t) =

T∑
t′=1

Gm(t, t′)γmr,t′ . (9)

Similar to flr, the vector gmr := [gmr(1) . . . gmr(T )]> is
expressed in terms of the time kernel matrix Gm ∈ ST++ and
vector γmr := [γmr,1 . . . γmr,T ]>, via gmr = Gmγmr.

Plugging (8)-(9) into the decomposition model dictated by
P ′ in (7), and after some matrix manipulations yields

P =

L∑
l=1

M∑
m=1

KlBlΓ
>
mGm (10)

where Bl := [βl1 · · · βlR] and Γm := [γm1 · · · γmR].
Using again (8)-(9), the function norms can be written as
‖flr‖2Kl

= β>lrKlβlr and ‖gmr‖2Gm = γ>mrGmγmr. Using
the properties of the trace operator, it follows that

R∑
r=1

‖flr‖2Kl
= ‖Bl‖2Kl

,

R∑
r=1

‖gmr‖2Gm = ‖Γm‖2Gm
(11)

where ‖X‖2B := Tr(X>BX) for any B � 0. By (10)-(11),
the functional optimization in (7) can be compactly expressed
as the non-convex matrix optimization problem

min
P,{Bl},{Γm}

‖Z−P‖2F + µ

L∑
l=1

‖Bl‖Kl
+ µ

M∑
m=1

‖Γm‖Gm

s.to P =

L∑
l=1

M∑
m=1

KlBlΓ
>
mGm. (12)

Since (12) admits low-rank minimizers anyway, the column
dimension of {Bl} and {Γm} could be possibly restricted to
a small R0. If the P minimizing (12) over this restricted fea-
sible set turns out to be of rank smaller thanR0, the restriction
comes at no loss of optimality; see also [22], [15], [17], [23].
The dimension R will be henceforth set to 20.

Remark 1. Having solved (12), price forecasts can be issued
not only for t /∈ T , but also for new nodes n /∈ N . This is
an important feature when dealing with markets having sea-
sonal pricing models: e.g., MISO updates its commercial grid
quarterly by adding, removing, and redefining nodes.

4. BSUM SOLVER

A block-coordinate descent (BCD) solver of (12) was devel-
oped in [19]. That BCD solver partitioned optimization vari-
ables into blocks {B1, . . . ,BL,Γ1, . . . ,ΓM}. By cyclically
iterating over blocks, per block minimizations were carried
out exactly while retaining the rest of the variables fixed. To
handle market data of even higher dimensions, a block suc-
cessive upper minimization (BSUM) solver is devised next.

Consider minimizing (12) over a specific block Bl, while
all other variables are maintained to their most recent values
{B̂l′}l′ 6=l, {Γ̂m}Mm=1. Upon rearranging terms in (12), Bl

can be updated as

B̂l = arg min
Bl

‖ZBl −KlBlH
>‖2F + µ‖Bl‖Kl

(13)

where H :=
∑M
m=1 GmΓ̂m and ZBl := Z−

∑
l′ 6=l Kl′B̂l′H

>.
Similarly, a particular Γm can be updated as

Γ̂m = arg min
Γm

‖ZΓ
m − FΓ>mGm‖2F + µ‖Γm‖Gm

(14)

where F :=
∑L
l=1 KlB̂l and ZΓ

m := Z−
∑
m′ 6=m FΓ>m′Gm′ .

Problems (13)-(14) exhibit the same canonical convex form:

min
X
‖A−BXC>‖2F + µ‖X‖B (15)

for an A ∈ Rd1×d3 , B ∈ Sd1++, and C ∈ Rd3×d2 . Let h(X)
denote the cost function in (15). Instead of directly minimiz-
ing h(X), the new BSUM solver successively minimizes a
function u(X; X̂), constructed at the most recent update X̂.
The function u(X; X̂) should satisfy h(X) ≤ u(X; X̂) and
h(X̂) = u(X̂; X̂) for all X, X̂ [25].

To derive a computationally convenient upper bound
u(X̂; X̂), let h1(X) denote the first summand of h(X) and
consider its Taylor expansion at X̂, which yields h1(X) =

h1(X̂) − 2 Tr
[
(X− X̂)>B>(A−BX̂C>)C

]
+ ‖B(X −

X̂)CT ‖2F . By upper bounding the third summand in this
expansion, h(X) can be upper bounded by u(X; X̂) :=

‖A−BX̂C>‖2F − 2 Tr
[
(X− X̂)>B>(A−BX̂C>)C

]
+

λmax(C>C)λmax(B)‖X − X̂‖2B + µ‖X‖B. Further, after
ignoring constant terms and completing the squares, mini-
mizing u(X; X̂) can be shown to be equivalent to

min
X
‖X− X̄‖2B +

µ

λmax(C>C)λmax(B)
‖X‖B (16)
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Algorithm 1 BSUM algorithm for solving (12)

1: Randomly initialize {B̂l}Ll=1 and {Γ̂m}Mm=1

2: F =
∑L
l=1 KlB̂l ;H =

∑M
m=1 GmΓ̂m; R = Z− FH>

3: repeat
4: Compute H =

∑M
m=1 GmΓ̂m and λmax(H>H)

5: for l = 1→ L do
6: B̄l = B̂l + 1

λmax(H>H)λmax(Kl)
KlRH

7: R = R + KlB̂lH
>

8: B̂l = S(B̄l; Kl,H)

9: R = R−KlB̂lH
>

10: end for
11: Compute F =

∑L
l=1 KlB̂l and λmax(F>F)

12: for m = 1→M do
13: Γ̄m = Γ̂m + 1

λmax(F>F)λmax(Gm)
GmR>F

14: R = R + FΓ̂>mGm

15: Γ̂m = S(Γ̄m; Gm,F)

16: R = R− FΓ̂>mGm

17: end for
18: until convergence.

where X̄ := X̂ + 1
λmax(C>C)λmax(B)

B(A −BX̂C>)C. In-
terestingly, the minimizer of (16) is provided in closed-form

S(X̄; B,C):=X̄

[
1− µ

2λmax(C>C)λmax(B)‖X̄‖B

]
+

where [a]+ := max{0, a}. The above update reveals that de-
pending on the value of µ, many of the {Bl} and {Γm} will
be zero matrices, thus effecting kernel selection. The BSUM
solver is tabulated as Alg. 1. Notice that finding the max-
imum eigenvalues of H>H and F>F involve only O(R2)
operations. BSUM iterates are guaranteed to converge to a
stationary point of (12) [25].

5. NUMERICAL TESTS

The proposed low-rank multi-kernel learning approach was
tested using real data from the MISO market. Day-ahead
hourly LMPs were collected across N = 1, 732 nodes for
the period June 1 to August 31, 2012. Two pools of K = 5
nodal and L = 5 temporal kernels were constructed as briefly
outlined next; see [19] for details. Kernels K1 and K2 were
selected as Laplacian kernels of a surrogate of the nodal con-
necivity graph; K3 as a Gaussian kernel; K4 as the identity
matrix; and K5 as the sample covariance of historical prices.
Regarding temporal kernels, several features were utilized in-
cluding yesterday’s same-hour LMPs; load, and weather fore-
casts; as well as categorical features such as hour of the day
and day of the week. Kernels {Gm}5m=1 were designed by
plugging these features into the linear and the Gaussian kernel
for different bandwidth values and feature subsets. Parameter
µ is tuned via cross-validation over the first two weeks.
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Fig. 1. RMSE comparison of forecasting methods. The RM-
SEs averaged across 78 evaluation days are 6.53 (red), 7.55
(blue), and 7.20 (black).
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Fig. 2. Objective value convergence for BSUM and BCD
in [19]. BSUM terminates in 6.5 minutes (408 iterates), while
BCD in 32.3 minutes (183 iterates).

Several factors not captured by the publicly available fea-
tures used here can severely affect the market. To account
for this non-stationarity, the designed day-ahead predictors
depend on market data only from the previous week. The
forecasting performance is illustrated in Fig. 1. Three ap-
proaches were tested: (i) the novel multi-kernel learning
method; (ii) a per-node ridge regression predictor; and (iii)
the persistence forecast which repeats yesterday’s prices.
Clearly, the novel method attains almost consistently the low-
est root mean-square error (RMSE). Even though R = 20,
the {Bl} and {Γm} minimizing (12) had rank 10. Out of the
10 kernels, K4 and G1 were consistently not selected.

Figure 2 compares the objective convergence of the
BSUM solver developed here, and the BCD solver of [19].
Both solvers were randomly initialized at the same point.
BSUM required more iterations than BCD to reach the same
cost value. Albeit, BSUM iterations are computationally
more efficient than those of BCD; thus, BSUM is nearly five
times faster than BCD in terms of total running time.
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