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ABSTRACT

This paper presents an online version of the widely used sparse

Bayesian learning (SBL) algorithm. Exploiting the variational

Bayes framework, an efficient online SBL algorithm is constructed,

that acts as a fully automatic learning method for the adaptive esti-

mation of sparse time-varying signals. The new method is based on

second order statistics and comprises a simple, automated sparsity-

imposing mechanism, different from that of other known schemes.

The effectiveness of the proposed online Bayesian algorithm is il-

lustrated using experimental results conducted on synthetic data.

These results show that the proposed scheme achieves faster initial

convergence and superior estimation performance compared to other

related state-of-the-art schemes.

Index Terms— adaptive estimation, sparse Bayesian learning,

variational Bayes

1. INTRODUCTION

Adaptive estimation of time-varying signals is a research field that

has received considerable attention in the signal processing literature

and is met in an immense number of applications, [1]. A plethora of

adaptive estimation techniques have been developed and analyzed

during the past decades, a large portion of which belongs to the least

squares (LS) family of algorithms. Nowadays, the advances of com-

pressive sensing have sparked new interest in the field of adaptive

estimation; the exploitation of signal sparsity in a time varying en-

vironment with the aim to improve the initial convergence rate and

estimation performance of adaptive techniques.

It is not surprising that the majority of sparse adaptive estimation

methods stems from the deterministic framework. In this context, a

soft-thresholding, coordinate descent type algorithm for solving the

adaptive formulation of the lasso operator is proposed in [2]. A reg-

ularized recursive LS (RLS) type algorithm that utilizes the expec-

tation maximization (EM) algorithm as a low-complexity solver is

derived in [3]. In [4] and [5], projection-based adaptive algorithms

are developed that induce sparsity either via projections on weighted

ℓ1 balls or generalized thresholding. Adaptive greedy variable se-

lection schemes have been also recently reported, e.g. [6]. However,

these algorithms require -at least- a rough knowledge of the signal

sparsity level and work effectively for sufficiently high signal spar-

sity.

In this paper, unlike previous studies, we view the adaptive esti-

mation problem from a Bayesian perspective. In this realm, the pa-

per focuses on the design of an adaptive variational Bayes algorithm

based on a slightly modified version of the hierarchical Bayesian
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model of the sparse Bayesian learning algorithm (SBL) proposed

in [7]. First, an appropriate factorization of the approximating joint

posterior distribution of the model parameters is considered, and a

variational Bayes algorithm for the batch estimation problem is de-

rived. Next, we move to the adaptive framework, where the updat-

ing of the parameters takes place after the presentation of each new

observation. Time-dependency on the parameters of the variational

scheme is now introduced and low-complexity time-recursions are

derived to update the parameters of the approximating posterior dis-

tributions. This gives rise to a sparse adaptive variational Bayesian

learning algorithm of O(N2) complexity, similar to that of all adap-

tive schemes which are based on second order statistics. In contrast

to deterministic optimization algorithms, the proposed scheme di-

rectly infers all model parameters from the data, and hence, the need

for parameter fine-tuning is eliminated. The performance of the new

algorithm is assessed via computer simulations which show that it

outperforms all related state-of-the-art adaptive deterministic algo-

rithms under a signal sparsity constraint.

To the best of our knowledge, this is the first time a sparse adap-

tive variational Bayes algorithm is presented. A Bayesian approach

to adaptive filtering has been previously described in [8]. However,

in [8] a type-II maximum likelihood method is adopted that leads

to a regularized RLS-type scheme. The algorithm developed in this

paper can be considered as a generalization of a recently proposed

algorithm, (cf. [9]), in the context of variational mean field the-

ory. Note further that compared to [9] a different Bayesian model is

adopted here and a different derivation procedure is followed, which

facilitates the extension of the proposed adaptive scheme for other

sparsity-inducing Bayesian models, such as models encompassing

Laplace priors, e.g. [10].

The paper is structured as follows. Section 2 defines the math-

ematical formulation of the adaptive estimation problem. In Sec-

tion 3 the adopted hierarchical Bayesian model is described. Sec-

tion 4 presents a variational Bayes for the batch estimation problem.

Section 5 presents the adaptive formulation of the batch variational

Bayes algorithm, while experimental results are given in Section 6.

Concluding remarks are reported in Section 7.

Notation: Vectors are represented as boldface lowercase letters,

e.g. x, and matrices as boldface uppercase letters, e.g. X, (·)T

denotes transposition, ‖ ·‖ stands for the standard ℓ2-norm, N (·) is

the Gaussian distribution, |·| denotes the determinant of a matrix or

absolute value in case of a scalar, G(·) is the Gamma distribution,

Γ(·) is the Gamma function, E[·] is the expectation operator, and

diag(x) denotes a diagonal matrix whose diagonal entries are the

elements of x.

2. PROBLEM FORMULATION

Let w = [w1, w2, . . . , wN ]T denote an unknown signal vector that

may be time varying and is assumed to be sparse, i.e. ξ of its N el-
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ements (whose positions are not known) are non-zero, with ξ ≪ N .

The unknown vector w can be sequentially estimated in time utiliz-

ing a set of observations and data {y(n),x(n)} that are assumed to

be associated by the linear regression model

y(n) = x
T (n)w + ǫ(n), (1)

where n is the time index, x(n) = [x1(n), x2(n), . . . , xN (n)]T is a

known signal vector, and ǫ(n) is assumed to be zero mean Gaussian

noise with precision β, i.e. ǫ(n) ∼ N (ǫ(n)|0, β−1). To estimate w

in the least squares (LS) sense, the following minimization criterion

can be used, typically expressed as the exponentially weighted sum

of the instantaneous estimation errors, i.e.,

min
ŵ(n)

n
∑

k=1

λ
n−k|y(k)− ŵ

T (n)x(k)|2, (2)

where 0 ≪ λ < 1 is the forgetting factor. Let X(n) be the n × N
data matrix whose kth row is xT (k), i.e., X(n) = [x(1),x(2),

. . . ,x(n)]T , y(n) = [y(1), y(2), . . . , y(n)]T be the observations

vector, and Λ(n) = diag([λn−1, λn−2, . . . , 1]T ). Then, (2) can be

written in vector notation as

min
ŵ(n)

‖Λ1/2(n)y(n)−Λ
1/2(n)X(n)ŵ(n)‖2. (3)

Our goal in this paper is, using the pairs of observations and data

vectors y(n),x(n), to design an adaptive estimator for w, that is

constrained to be sparse. To this end, we adopt a slightly modified

version of the hierarchical Bayesian model of [7] and propose a fast

online variational Bayes algorithm.

3. BAYESIAN MODELING

We consider first the estimation problem defined in (3), in its batch

mode, where there is no dependence on n. Thus, we temporarily

drop the time index n, which will be retrieved when introducing

time-recursions in Section 5. Due to the exponentially weighted data

window used in (3), we consider the alternative (with respect to (1))

observation model (cf. [3])

y = Xw + ε, (4)

where ε is assumed to be zero mean Gaussian noise with precision

βΛ, ε ∼ N (ε|0,β−1
Λ

−1). From a probabilistic point of view, the

exact form of the additive noise gives rise to the likelihood function

p(y|w,β) = (2π)−
n

2 β
n

2 |Λ|
1

2 exp

[

−
β

2
‖Λ

1

2 y −Λ
1

2Xw‖2
]

.

(5)

Notice that the maximum likelihood (ML) estimate from (5) coin-

cides with the LS solution of (3). However, as it was previously

mentioned, the estimator is constrained to be sparse. To this end,

in the Bayesian framework, the likelihood in (5) should be comple-

mented by suitable conjugate priors over the parameters w and β.

Specifically, a nonnegative Gamma prior with parameters ρ and δ is

adopted for β,

p(β; ρ, δ) = G(β; ρ, δ) =
δρ

Γ(ρ)
β
ρ−1exp [−δβ] . (6)

Next, the prior knowledge of the sparsity of w is embedded in our

Bayesian model via a heavy-tailed Student-t distribution, (see also

[7]). The Student-t distribution is introduced as a two-level conju-

gate hierarchical prior. In the first level, a Gaussian prior is selected

for w,

p(w|α,β) = N (w|0,β−1
A

−1) =

N
∏

i=1

p(wi|αi,β)

=
N
∏

i=1

(2π)−
1

2 β
1

2α
1

2

i exp

[

−
β

2
w2

iαi

]

, (7)

where α = [α1,α2, . . . ,αN ]T and A = diag(α). In the second

level of hierarchy, a Gamma distribution is assigned to the precision

parameters αi, i.e.,

p(αi; a, b) = G(αi; a, b) =
ba

Γ(a)
α
a−1
i exp [−bαi] . (8)

The difference between the proposed model and the hierarchical

Bayesian model of [7] is the normalization of the variances of wi’s

by β in (7). This modification ensures the unimodality of the poste-

rior joint distribution, [11], and leads to simpler and more compact

update equations, as will be shown later.

4. VARIATIONAL BAYESIAN INFERENCE

The variational approach to the proposed hierarchical Bayesian

model involves the maximization of the log-evidence logp(y) of the

model via a variational lower bound, [12]. This operation is equiv-

alent to minimizing the Kullback-Leibler distance between the true

posterior pdf p(w,β,α|y) (which cannot be expressed in closed

form) and an approximating distribution q(w,β,α), which here is

assumed to accept the following mean field factorization

q(w,β,α) = q(w)q(β)q(α) =

N
∏

i=1

q(wi)q(β)
N
∏

i=1

q(αi) (9)

Equation (9) assumes posterior independence over the disparate co-

ordinates of w, which (a) differentiates the proposed approach from

the variational SBL setting adopted in [13], and (b) is vital for the

development of the adaptive scheme that will be introduced in the

next Section.

It is known, [12], that the general expression for the approximat-

ing distributions q(θi), where θi is any of the model parameters in

θ = [w1, . . . , wN ,β,α1, . . . ,αN ]T , is given by

q(θi) =
exp (Ej �=i [logp(y,θ)])

∫

exp (Ej �=i [logp(y,θ)]) dθi
(10)

where Ej �=i [·] denotes expectation w.r.t. all q(θj)’s except for q(θi).
Applying (10) to the proposed model, the approximating pdf for each

coordinate wi is found to be Gaussian given by

q(wi) = N (wi;µi,σi) = (2π)−
1

2 σ
− 1

2

i exp

[

−
1

2

(wi − µi)
2

σi

]

,

(11)

with

σi = 〈β〉−1(xT
i Λxi + 〈αi〉)

−1, (12)

µi = 〈β〉σix
T
i Λ(y −X¬iw¬i). (13)

In (13), xi is the i-th column of X, X¬i is the data matrix X af-

ter removing its i-th column and 〈·〉 denotes expectation w.r.t. the
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distributions of the parameters appearing within the brackets. Next,

for the noise precision β we get that q(β) is a Gamma distribution

expressed as

q(β) = G(β; ρ̃, δ̃) (14)

with ρ̃ = n+N
2

+ ρ and δ̃ = δ + 1
2

〈

‖Λ
1

2 y −Λ
1

2Xw‖2
〉

+
1
2

〈

wTAw
〉

. The precision parameters αi’s are also Gamma dis-

tributed, i.e.,

q(αi) =

(

〈β〉〈w2

i
〉

2
+ b

)a+ 1

2

Γ(a+ 1
2
)

α
a− 1

2

i exp

[

−

(

〈β〉〈w2
i 〉

2
+ b

)

αi

]

.

(15)

Notice that each parameter of the pdfs in (11), (14), and (15) is ex-

pressed in terms of expectations of quantities that involve the re-

maining ones and, thus, all parameters are interrelated. More specif-

ically, as far as the expected values of the parameters of the above

pdf’s are concerned, these are given by (13) for wi and

〈β〉 =
n+N

2
+ ρ

δ + 1
2

〈

‖Λ
1

2 y −Λ
1

2Xw‖2
〉

+ 1
2

∑N
i=1(µ

2
i + σi)〈αi〉

(16)

〈αi〉 =
a+ 1

2

b+ 1
2
〈β〉 (µ2

i + σi)
, (17)

where in (16)

〈

‖Λ
1

2 y −Λ
1

2Xw‖2
〉

= ‖Λ
1

2 y −Λ
1

2Xµ‖2 +

N
∑

i=1

σix
T
i Λxi

and µ = [µ1, µ2, . . . , µN ]T . Hence, a cyclic iterative procedure can

be established involving (12), (13),(16) and (17)1. Due to the con-

vexity of the factors q(wi), q(β) and q(αi), the variational Bayes

algorithm procedure converges and solves the batch estimation prob-

lem by providing the posterior mean µ as a sparse estimate for w.

5. ADAPTIVE VARIATIONAL SBL (AVSBL)

In this Section, the variational scheme presented previously for solv-

ing the batch estimation problem is properly adjusted in order to

perform online processing in a computationally efficient manner. To

this end, we first define the following time-dependent quantities:

R(n) = X
T (n)Λ(n)X(n) +A(n), (18)

z(n) = X
T (n)Λ(n)y(n), (19)

d(n) = y
T (n)Λ(n)y(n), (20)

Note that all three of them can be efficiently time-updated as follows:

R(n) = λR(n− 1) + x(n)xT (n)− λA(n− 1) +A(n) (21)

z(n) = λz(n− 1) + x(n)y(n), (22)

d(n) = λd(n− 1) + y2(n). (23)

1In (13) the first i−1 elements of the vector w
¬i are µ1, . . . , µi−1 com-

puted in the current cycle, while its remaining elements are µi+1, . . . , µN

computed in the previous cycle of the iterative scheme.

Initialize β(0), ŵ(0),A(0),R(0), z(0), d(0)

Set a, b, ρ, δ to very small values

for n = 1, 2, . . .

for i = 1, 2, . . . , N

αi(n) =
a+ 1

2

b+ 1

2
(β(n−1)ŵ2

i
(n−1)+r−1

ii
(n−1)

end for

R(n) = λR(n− 1)+x(n)xT (n)−λA(n− 1)+A(n)

z(n) = λz(n− 1) + x(n)y(n)

d(n) = λd(n− 1) + y2(n)

β(n) =
(

(1− λ)−1 + ρ
)

/
(

d(n)− zT (n)ŵ(n) + δ
)

for i = 1, 2, . . . , N

ŵi(n) = r−1
ii (n)

(

zi(n)− rT
¬i(n)ŵ¬i(n)

)

end for

end for

Table 1. The AVSBL algorithm

It is easy to realize that R(n) is the sample auto-correlation matrix

of x(n), regularized by the diagonal matrix A(n), z(n) is the sam-

ple cross-correlation vector between x(n) and y(n), and d(n) is the

energy of the observation vector y(n). Now, by substituting (12) in

(13) and using (18) and (19) it is straightforward to show that the

adaptive weights ŵi(n)(= µi(n)) can be efficiently time updated as

follows

ŵi(n) =
1

rii(n)

(

zi(n)− r
T
¬i(n)ŵ¬i(n)

)

, (24)

for i = 1, 2, . . . , N . In (24) rii(n) is the i-th diagonal element

of R(n), r¬i(n) is the i-th column of R(n) after removing its

i-th element, and ŵT
¬i(n) = [ŵ1(n), . . . , ŵi−1(n), ŵi+1(n −

1), . . . , ŵN (n − 1)]T . Note that each weight estimate ŵi(n) de-

pends on the most recent estimates of the other weights2. Moreover,

it can be shown from (16) that the precision parameter β(n) can

be very well approximated by the following expression (a detailed

derivation is omitted here due to space limitations)

β(n) =
1/(1− λ) + ρ

d(n)− zT (n)ŵ(n) + δ
, (25)

where the term 1/(1 − λ) stands for the active time window in an

exponentially weighted LS setting. Finally from (12) and (17) we

get for i = 1, 2, . . . , N ,

αi(n) =
a+ 1

2

b+ 1
2
(β(n− 1)ŵ2

i (n− 1) + r−1
ii (n− 1))

. (26)

The main steps of the proposed adaptive variational sparse Bayesian

learning (AVSBL) algorithm are given in Table 1. The AVSBL

algorithm is based on second-order statistics and has an O(N2)
complexity, similar to the classical RLS. The most computationally

costly steps of the algorithm requiring O(N2) operations are those

related to the update rule of R(n) and the weight vector ŵ(n). As

shown in the simulations of Section 6, the AVSBL algorithm con-

verges very fast to a sparse estimate for w and offers much lower

steady-state estimation error compared to other competing sparse

adaptive schemes.

2It can be shown that, for n fixed, the recursion in (24) over i coin-
cides with one Gauss-Seidel iteration for solving the system of equations
R(n)ŵ(n) = z(n), see also [9].
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Fig. 1. NMSE of sparse adaptive algorithms.
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Fig. 2. Tracking performance of sparse adaptive algorithms.

It is interesting to note that in contrast to other recently reported

deterministic sparse adaptive estimation techniques, e.g. [2–4], the

proposed sparse learning method is fully automated; there is no need

for fine-tuning or cross-validating parameters, which is very impor-

tant from a practical point of view. Most adaptive deterministic

schemes are sequential alternatives to the lasso estimator, and hence,

variable selection is performed via soft-thresholding, e.g. [2]. In-

stead, a completely different sparsity-inducing mechanism is used in

the AVSBL algorithm, which is fully automatic. More specifically,

as the algorithm progresses in time, many of the exponentially dis-

tributed precision parameters αi’s are driven to very large values,

forcing also the corresponding diagonal elements rii(n) of R(n) to

become large (Eq. (18)). As a result, according to (24), many weight

parameters are forced to become nearly zero, thus imposing sparsity.

6. EXPERIMENTAL RESULTS

In this Section we conduct computer simulations in an adaptive fil-

tering setup to assess the performance of existing state-of-the-art de-

terministic adaptive algorithms and the proposed AVSBL algorithm.

In all experiments noise is assumed to be white Gaussian, the input

sequence is a random ±1 sequence of length 1600 and the forgetting

factor λ is set to 0.99. A sparse Rayleigh fading channel of length

N = 64 is considered, where each nonzero coefficient follows

the so-called Jakes’ model with a normalized Doppler frequency
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Fig. 3. NMSE versus SNR for sparsity ξ = 12.

fdTs = 5 × 10−5. Hyperparameters a, b, ρ and δ are set to 10−6.

The normalized mean square error (NMSE) used to assess the per-

formance of the algorithms is defined as NMSE = E
[

‖w − ŵ‖2
]

/

E
[

‖w‖2
]

. The proposed AVSBL algorithm is compared to the RLS,

the time-weighted Lasso (TWL) coordinate descent type algorithm

of [2] and the sparse RLS (SPARLS) algorithm of [3]. In addi-

tion, the genie-aided RLS (GARLS), which operates only on the

nonzero coefficients of the parameter vector w, is also included as

a benchmark. Note that both TWL and SPARLS incorporate soft-

thresholding operations, and multiple runs were first performed to

estimate the optimal threshold parameter values in terms of NMSE.

In the first experiment, the signal to noise ratio (SNR) is set to

15dB and a sparsity level of ξ = 12 is assumed. Fig. 1 shows the

NMSE values of the considered algorithms, averaged over 30 input

and noise sequence realizations. The proposed AVSBL algorithm

exhibits significantly better estimation performance in comparison to

TWL and SPARLS and approaches the optimum channel cognizant

GARLS.

The tracking capability of the proposed AVSBL algorithm is

shown in Fig. 2. This time a new Rayleigh distributed nonzero tap

is added to the channel at time instant 700. It is easy to verify that

the AVSBL algorithm adapts more rapidly to sudden changes and

converges faster than the other algorithms. In the third experiment,

the sparsity level ξ = 12 is kept fixed and the SNR ranges from 0db

to 20dB. Figure 3 shows the resulting NMSE curves versus SNR.

For each SNR level, the NMSE values after convergence are aver-

aged over a total of 100 realizations of input and noise sequences.

We observe that the proposed AVSBL algorithm achieves the best

performance for all SNR values and is relatively close to the optimal

NMSE bound of GARLS.

7. CONCLUSION

In this paper, a variational framework for the SBL algorithm is de-

veloped, which allows the SBL to operate in an adaptive estimation

setting, imposing also the sparsity constraint on the parameter vector.

Experimental results verify the enhanced variable selection capabil-

ity of the variational adaptive SBL. A proof of convergence of the

proposed adaptive algorithm is currently under investigation. Possi-

ble extensions of this work include the incorporation of the sparsity

promoting Laplace distribution, as utilized in the Bayesian models

of [10] and [14].
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