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ABSTRACT

We propose a new method, robust binary fused compressive
sensing (RoBFCS), to recover sparse piece-wise smooth sig-
nals from 1-bit compressive measurements. The proposed
method is a modification of our previous binary fused com-
pressive sensing (BFCS) algorithm, which is based on the
binary iterative hard thresholding (BIHT) algorithm. As in
BIHT, the data term of the objective function is a one-sided
`1 (or `2) norm. Experiments show that the proposed algo-
rithm is able to take advantage of the piece-wise smoothness
of the original signal and detect sign flips and correct them,
achieving more accurate recovery than BFCS and BIHT.

Index Terms— 1-bit compressive sensing, iterative hard
thresholding, group sparsity, signal recovery.

1. INTRODUCTION

In compressive sensing (CS) [1], [2], a sparse signal x ∈ Rn
is shown to be recoverable from a few linear measurements

b = Ax, (1)

where b ∈ Rm (with m < n), A ∈ Rm×n is the sensing ma-
trix (which satisfies some conditions), and the fact thatm < n
makes (1) an ill-posed problem. This classical formulation
assumes real-valued measurements, thus ignoring that, in re-
ality, any acquisition involves quantization. In quantized CS
(QCS) [3], [4], [5], [6], [7], [8], this fact is taken into account.
An interesting extreme case of QCS is 1-bit CS [9],

y = sign (Ax) , (2)

where sign(·) is the element-wise sign function. Such 1-bit
measurements can be acquired by a comparator with zero,
which is very inexpensive and fast, as well as robust to ampli-
fication distortions. In contrast with the measurement model
of standard CS, 1-bit measurements are blind to the magni-
tude of the original signal x; the goal may then only be to
recover x, up to an intrinsically unrecoverable magnitude.

The first algorithm for signal recovery from 1-bit mea-
surements, named renormalized fixed point iteration (RFPI)

Work partially supported by Fundação para a Ciência e Tecnologia,
grants PEst-OE/EEI/LA0008/2013 and PTDC/EEI-PRO/1470/2012. Xian-
grong Zeng is partially supported by grant SFRH/BD/75991/2011.

was proposed in [9]. Soon after, [10] showed that recov-
ery from nonlinearly distorted measurements is also possi-
ble, and [10] proposed a greedy algorithm (matching sign
pursuit) [11]. After that seminal work, several algorithms
for 1-bit CS have appeared; a partial list includes linear pro-
gramming [12], [13], restricted-step shrinkage [14], and bi-
nary iterative hard thresholding (BIHT), which performs bet-
ter than the previous algorithms. Algorithms for 1-bit CS,
based on generalized approximate message passing [15] and
majorization-minimization [16], were proposed in [17] and
[18], respectively. In [19], the `1 norm in the data-term of
[12] was replaced by an `0 norm; the resulting problem is
solved by successive approximations, yielding a sequence of
simpler problems, not requiring prior knowledge about the
sparsity of the original signal. Considering the possibility of
sign flips due to by noise, [20] introduced the adaptive outlier
pursuit (AOP) algorithm, and [21] extended it into an algo-
rithm termed noise-adaptive RFPI, which doesn’t need prior
information on the signal sparsity and number of sign flips.

More recently, [22] and [23] applied 1-bit CS in image
acquisition, [24] studied matrix completion from noisy 1-bit
observations, [25] used methods of statistical mechanics to
examine typical properties of 1-bit CS. The authors of [26]
addressed 1-bit CS using their recent gradient support pur-
suit (GraSP) [27] algorithm; finally, a quantized iterative hard
thresholding method proposed in [28] provides a bridge be-
tween 1-bit and high-resolution QCS.

Recently, we proposed binary fused compressive sensing
(BFCS) [29], [30] to recover group-sparse signals from 1-bit
CS measurements. The rationale is that group-sparsity may
express more structured knowledge about the unknown signal
than simple sparsity, thus potentially allowing for more robust
recovery from fewer measurements. In this paper, we further
consider the possibility of sign flips, and propose robust BFCS
(RoBFCS) based on the AOP method [20].

The rest of the paper is organized as follows: Section II
reviews the BIHT and BFCS algorithms, and introduces the
proposed RoBFCS method; Section III reports experimental
results and Section IV concludes the paper.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 7724



2. ROBUST BFCS

2.1. The Observation Model

In this paper, we consider the noisy 1-bit measurement model,

y = sign (Ax + w) , (3)

where y ∈ {+1,−1}m, A ∈ Rm×n is as above, x ∈ Rn is
the original signal, and w ∈ Rm is additive white Gaussian
noise with the variance σ2, due to which some of the mea-
surements signs may change with the respect to the noiseless
measurements as given by (2).

2.2. Binary Iterative Hard Thresholding (BIHT)

To recover x from y, Jacques et al [31] proposed the criterion

min
x

f(y �Ax)

subject to ‖x‖2 = 1, x ∈ ΣK ,
(4)

where “�” represents the Hadamard (element-wise) product,
ΣK = {x ∈ Rn : ‖x‖0 ≤ K} (with ‖v‖0 denoting the num-
ber of non-zero components in v) is the set of K-sparse sig-
nals, and f is one of the penalty functions defined next. To
penalize linearly the sign consistency violations, the choice is
f(z) = 2 ‖z−‖1, where z− = min (z, 0) (where the mini-
mum is applied component-wise and the factor 2 is included
for later convenience) and ‖v‖1 =

∑
i |vi| is the `1 norm.

Quadratic penalization of the sign violations is achieved by
using f(z) = 1

2 ‖z−‖
2
2, where the factor 1/2 is also included

for convenience. The iterative hard thresholding (IHT) [32]
algorithm applied to (4) (ignoring the norm constraint during
the iterations) leads to the BIHT algorithm [31]:

Algorithm BIHT
1. set t = 0, τ > 0,x0 and K
2. repeat
3. vt+1 = xt − τ∂f (y �Axt)
4. xt+1 = PΣK (vt+1)
5. t← t+ 1
6. until some stopping criterion is satisfied.
7. return xt/ ‖xt‖

In this algorithm, ∂f denotes the subgradient of the objective
(see [31], for details), which is given by

∂f (y �Ax) =

{
AT (sign(Ax)− y) , `1 penalty
(YA)

T
(YAx)− , `2 penalty,

(5)
where Y = diag(y) is a diagonal matrix with vector y in its
diagonal. Step 3 corresponds to a sub-gradient descent step
(with step-size τ ), while Step 4 performs the projection onto
the non-convex set ΣK , which corresponds to computing the
best K-term approximation of v, i.e., keeping the K largest

components in magnitude and setting the others to zero. Fi-
nally, the returned solution is projected onto the unit sphere
to satisfy the constraint ‖x‖2 = 1. The versions of BIHT for
the `1 and `2 penalties are referred to as BIHT and BIHT-`2,
respectively.

2.3. Binary Fused Compressive Sensing (BFCS)

We begin by introducing some notation. The TV semi-norm
of a vector v ∈ Rn is given by TV(v) =

∑n−1
i=1 |vi+1 − vi|.

For ε ≥ 0, we denote as Tε the ε-radius TV ball, i.e., Tε =
{v ∈ Rp : TV (v) ≤ ε}. The projection onto Tε (denoted
PTε ) can be computed by the algorithm proposed in [33]. Let
G(v) = ∪K(v)

i=1 Gi(v), where each Gk(v) ⊂ {1, ..., n} is a set
of consecutive indices Gk(v) = {ik, ..., ik + |Gk| − 1} such
that, for j ∈ Gk, vj 6= 0, while vik−1 = 0 and vik+|Gk| = 0
(assume that v0 = vn+1 = 0); Gk(v) is the k-th group of
indices of consecutive non-zero components of v, and there
are K(v) such groups. Let vGk ∈ R|Gk| be the sub-vector of
v with indices in Gk.

Obviously, the criterion in (4) doesn’t encourage group-
sparsity. To achieve that goal, we propose the criterion

min
x

f (y �Ax)

subject to ‖x‖2 = 1, x ∈ ΣK ∩ Sε
(6)

where Sε is defined as

Sε =
{
x ∈ Rn : TV (xGk) ≤ ε, k = 1, · · · ,K(x)

}
. (7)

where TV (xGk) = (|Gk| − 1)
−1 TV (xGk) is a normalized

TV, where |Gk| − 1 is the number of absolute differences in
TV (xGk). In contrast with a standard TV ball, Sε promotes
the “fusion” of components only inside each non-zero group,
that is, the TV regularizer does not “compete” with the spar-
sity constraint imposed by x ∈ ΣK .

To address the optimization problem in (6), we propose
the following algorithm (which is a modification of BIHT):

Algorithm BFCS
1. set t = 0, τ > 0, ε > 0,K and x0

2. repeat
3. vt+1 = xt − τ∂f (y �Axt)
4. xt+1 = PSε(PΣK (vt+1))
5. t← t+ 1
6. until some stopping criterion is satisfied.
7. return xt/ ‖xt‖

Notice that the composition of projections in line 4 is not
in general equal to the projection on the non-convex set ΣK ∩
Sε, i.e., PΣK∩Sε 6= PSε ◦ PΣK . However, this composition
does satisfy some relevant properties, which result from the
structure of PSε expressed in the following lemma (the proof
of which is quite simple, but is omitted due to lack of space).
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Lemma 1 Let v ∈ Rn and x = PSε (v), then

xGk = PTε(|Gk|−1)
(vGk) , for k = 1, · · · ,K(v);

xG(v) = 0,
(8)

where G(v) = {1, · · · , n} \G(v) and 0 is a vector of zeros.

The other relevant property ofPSε is that it preserves spar-
sity, as expressed formally in the following lemma.

Lemma 2 If v ∈ ΣK , then PSε(v) ∈ ΣK . Consequently,
for any v ∈ Rn, PSε(PΣK (v)) ∈ ΣK ∩ Sε.

That is, although it is not guaranteed that PSε
(
PΣK (v)

)
coincides with the orthogonal projection of v onto ΣK ∩ Sε,
it belongs to this non-convex set. In fact, the projection onto
ΣK ∩ Sε can be shown to be an NP-hard problem [34], since
it belongs to the class of shaped partition problems [35], [36]
with variable number of parts.

2.4. Proposed Formulation and Algorithm

In this paper we extend the BFCS approach to deal with the
case where there may exist some sign flips in the measure-
ments. To this end, we adopt the AOP technique [20], yield-
ing a new approach that we call robust BFCS (RoBFCS); the
similarly robust version of BIHT is termed RoBIHT. Assume
that there are at most L sign flips and define the binary vector
Λ ∈ {−1,+1}m as

Λi =

{
−1 if yi is “flipped′′;
+1 otherwise. (9)

Then, the criterion of RoBFCS is given by

min
x∈Rn, Λ∈{−1,+1}m

f (y �Λ�Ax)

subject to ‖x‖2 = 1, x ∈ ΣK ∩ Sε
‖Λ−‖1 ≤ L,

(10)

where Λ− = min{Λ,0}. Problem (10) is mixed continu-
ous/discrete, and clearly difficult. A natural approach to ad-
dress (10) is via alternating minimization, as follows.

Algorithm Framework of RoBFCS
1. set t = 0,Λ0 = 1 ∈ Rm, ε > 0,K, L and x0

2. repeat
3. xt+1 = Φ (y �Λt,K, ε)
4. Λt+1 = Ψ (y �Axt+1, L)
5. t← t+ 1
6. until some stopping criterion is satisfied.
7. return xt/ ‖xt‖

In this algorithm (template) lines 3 and 4 correspond to
minimizing (10) with respect to x and Λ, respectively. The

minimization w.r.t. x defines the function

Φ (u,K, ε) = arg min
x∈Rn

f (u�Ax)

subject to ‖x‖2 = 1, x ∈ ΣK ∩ Sε
(11)

which is an instance of (6). The minimization w.r.t. Λ defines
the function

Ψ (z, L) = arg min
Λ∈{−1,1}m

f (z�Λ)

subject to ‖Λ−‖1 ≤ L
(12)

As shown in [20], [21], function (12) is given in closed form
by (

Ψ (z, L)
)
i

=

{
−1 if zi ≥ τ ;
+1 otherwise, (13)

where τ is the L-th largest element (in magnitude) of z.
In the proposed RoBFCS algorithm, rather than imple-

menting (11) by running the BFCS algorithm until some stop-
ping criterion is satisfied, a single step thereof is applied, fol-
lowed by the implementation of (12) given by (13).

Algorithm RoBFCS
1. set t = 0, τ > 0, ε > 0,K, L and x0,Λ0 = 1 ∈ Rm
2. repeat
3. vt+1 = xk − τ∂f (y �Λt �Axk)
4. xt+1 = PSε (PΣK (vt+1))
5. Λt+1 = Ψ (y �Axt+1, L)
6. t← t+ 1
7. until some stopping criterion is satisfied.
8. return xt/ ‖xt‖

The subgradient in line 3 is as given by (5), with y replaced
with y � Λt. If the original signal is known to be non-
negative, the algorithm includes a projection onto Rn+ in each
iteration, i.e., line 4 becomes xk+1 = PRn+ (PSε (PΣK (vk+1))).
The versions of RoBFCS (RoBIHT) with `1 and `2 objectives
are referred to as RoBFCS and RoBFCS-`2 (RoBIHT and
RoBIHT-`2), respectively.

3. EXPERIMENTS

In this section, we report results of experiments aimed at
studying the performance of RoBFCS. All the experiments
were performed using MATLAB on a 64-bit Windows 7 PC
with an Intel Core i7 3.07 GHz processor. In order to mea-
sure the performance of different algorithms, we employ the
following five metrics defined on an estimate e of an original
vector x (both of unit norm):
• Mean absolute error, MAE = ‖x− e‖1 /n;
• Mean square error, MSE = ‖x− e‖22 /n;
• Position error rate, PER =

∑
i

∣∣|sign(xi)|−|sign(ei)|
∣∣/n;

• Angle error, AE = arccos 〈x, e〉 /π;
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Table 1. Experimental results
Metrics BIHT BIHT-`2 BFCS BFCS-`2 RoBIHT RoBIHT-`2 RoBFCS RoBFCS-`2

MAE 0.0019 0.0032 0.0008 0.0034 0.0019 0.0038 0.0001 0.0038
MSE 7.43E-5 1.65E-4 2.87E-5 1.78E-4 7.12E-5 2.04E-4 4.00E-7 2.06E-4
PER 1.8% 4.1% 0.9% 4.9% 2.0% 4.7% 0% 5.2%
HE 0.0450 0.1360 0.0530 0.0995 0.0050 0.1420 0.0010 0.1390
AE 0.1234 0.1852 0.0764 0.1927 0.1208 0.2070 0.0085 0.2082

• Hamming error, HE = ‖sign(Ax)− sign(Ae)‖0/m.
The original signals x are taken as sparse and piece-wise

smooth, of length n = 2000 with sparsity level K = 160;
specifically,

x̄i =


10 + 0.1 ki, i ∈ ∪0.25d

i=1 Bi
15 + 0.1 ki, i ∈ ∪0.5d

i=0.25d+1Bi
−10 + 0.1 ki, i ∈ ∪0.75d

i=0.5d+1Bi
−15 + 0.1 ki, i ∈ ∪di=0.75d+1Bi
0, i 6∈ ∪di=1Bi

(14)

where the ki are independent samples of a zero-mean, unit
variance Gaussian random variable, d is the number of non-
zero groups of x, and Bi, i ∈ {1, · · · , d} indexes the i-th
group, defined as

Bi = {50 + (i− 1)n/d+ 1, · · · , 50 + (i− 1)n/d+K/d} .

The signal is then normalized, x = x̄/‖x̄‖2. The sensing
matrix A is a 2000× 2000 matrix with components sampled
from the standard normal distribution. Finally, observations
y are obtained by (3), with noise standard deviation σ = 1.
The assumed number of sign flips is L = 10.

We run the algorithms BIHT, BIHT-`2, BFCS, BFCS-`2,
RoBIHT, RoBIHT-`2, RoBFCS and RoBFCS-`2. The stop-
ping criterion is

∥∥x(k+1) − x(k)

∥∥ / ∥∥x(k+1)

∥∥ ≤ 0.001, where
x(k) is estimate at the k-th iteration. Following the setup of
[31] and [20], the step-size of BIHT and RoBIHT and that
of BIHT-`2 and Ro BIHT-`2 is τ = 1 and 1/m, respectively.
While in BFCS, BFCS-`2, RoBFCS, RoBFCS-`2, τ and ε are
hand tuned for the best improvement in SNR. The quantitative
results are shown in Table 1.

From Table 1, we can see that RoBFCS performs the best
in terms of the metrics considered. Moreover, the algorithms
with `1 barrier perform better than those with `2 barrier.

4. CONCLUSIONS

Based on the previously proposed BFCS (binary fused com-
pressive sensing) method, we have proposed an algorithm for
recovering sparse piece-wise smooth signals from 1-bit com-
pressive measurements with some sign flips. We have shown
that if the original signals are in fact sparse and piece-wise
smooth and there are some sign flips in the measurements, the

proposed method (termed RoBFCS – robust BFCS) outper-
forms (under several accuracy measures) the previous meth-
ods BFCS and BIHT (binary iterative hard thresholding). Fu-
ture work will aim at making RoBFCS adaptive in terms ofK
and L.
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