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ABSTRACT
This paper explores covariance estimation from energy measure-
ments that are collected via a quadratic form of measurement vec-
tors. A popular structural model is considered where the covariance
matrices possess low-rank and sparse structures simultaneously. We
investigate a weighted convex relaxation algorithm tailored for this
joint structure, which guarantees exact and universal recovery from a
small number of measurements. The algorithm is also robust against
noise and imperfect structural assumptions. In particular, when
the non-zero entries of the covariance matrix exhibit power-law
decay, our algorithm admits exact recovery as soon as the number
of measurements exceeds the theoretic limit. Our method is related
to sparse phase retrieval: the analysis framework herein recovers
and strengthens the best-known performance guarantees by extend-
ing them to approximately sparse and noisy scenarios as well as a
broader class of measurement vectors, and our results are derived
using much simpler analysis methods.

Index Terms— Quadratic Sampling, Convex Relaxation, Sparse,
Low-Rank, RIP-`2/`1

1. INTRODUCTION

A broad class of signal processing and wireless communication tasks
in stochastic environments requires reliable estimates of the spectral
characteristics of random signals [1]. For instance, optimal signal
transmissions are often based on the Karhunen–Loï¿œve decompo-
sition of a random process, which requires knowledge of its second-
order statistics [2]. Indeed, covariance estimation has become a core
step that dictates the performance of various signal processing and
communication algorithms.

In this paper, we consider the problem of recovering an unknown
covariance matrix Σ ∈ Rn×n from a small number of measurements
of the form

yi = aTi Σai + ηi, i = 1, . . . ,m, (1)

where y := {yi}mi=1 denotes the measurements, ai ∈ Rn repre-
sents the measurement vector, and η := {ηi}mi=1 denotes the noise.
The measurements aTi Σai’s are quadratic in ai and are referred
to as quadratic measurements; they are also non-negative given the
positive semidefiniteness (PSD) of Σ. The measurement model (1)
subsumes several sampling scenarios based on energy measurements
or magnitude measurements. A partial list is provided as follows.

Spectrum Estimation of Stochastic Processes: In the high-
frequency regime, an empirical energy measurement is often more
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accurate (and easier to obtain) than a phase measurement. For in-
stance, energy measurements will become more reliable than phase
measurements as communication systems shift towards extremely
high carrier frequency regimes (e.g. 60GHz communications [3]),
where fast phase variation degrades estimation. If we employ a mea-
surement vector ai and observe the average energy overN instances
{xt}Nt=1, then the measurement can be expressed as

yi =
1

N

∑N

t=1

∣∣∣aTi xt∣∣∣2 = aTi ΣNai, (2)

where ΣN := 1
N

∑N
t=1 xtx

T
t is the sample covariance matrix.

Noncoherent Subspace Detection: Matched subspace detection
[4] is widely applied in wireless communication, radar, and pattern
recognition when the transmitted signal is encoded by the member-
ship of subspaces. Our problem formulation can also be cast as re-
covering the principal subspace of a dataset {xt}Nt=1 with an energy
detector obtaining m measurements in the form of (2).

Compressive Phase Space Tomography: Phase Space Tomogra-
phy [5] is an appealing method to measure the correlation matrix of
a wave field in physics. However, tomography becomes challenging
when the correlation matrix is large. Recently, it was proposed ex-
perimentally in [6] to recover an approximately low-rank correlation
matrix [7] by only taking a few quadratic measurements in (1).

Phase Retrieval: Due to the physical constraints, one can only
measure and record intensities of the Fourier coefficients of an op-
tical object. This gives rise to the problem of recovering a sig-
nal x ∈ Rn from magnitude measurements, known as phase re-
trieval [8,9]. If we set Σ := xxT , then our problem formulation (1)
subsumes phase retrieval as a special case.

1.1. Contributions

In all of the above applications, it is of great interest to faithfully
recover the covariance matrices from only a number of quadratic
measurements that is much smaller than the ambient dimension.
This is made possible by exploring low-dimensional structures of
the covariance matrices, such as sparsity, low rank, and so on. A
general analysis framework for various structural assumptions has
been recently proposed in [10]. In this paper, we consider recovery
of covariance matrices that are simultaneously sparse and low-rank
from (1). This joint structure arises in many related problems such
as sparse principal component analysis [11], sparse signal recovery
from random magnitude measurements [12–14], etc. See [15] and
the reference therein.

We develop a convex optimization algorithm, which seeks the
covariance matrix that minimizes a weighted sum of its elementwise
`1 norm and trace norm satisfying the measurements (1). Based on a
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key and novel mixed-norm restricted isometry property (called RIP-
`2/`1) introduced in [10], our analysis demonstrates that the pro-
posed algorithm allows exact and universal covariance estimation
from very few quadratic measurements in the absence of noise, pro-
vided that the sampling vectors are sub-Gaussian distributed. Once
the measurement vectors are selected, a large class of covariance
matrices satisfying the presumed structure can all be recovered with
high probability. Our performance guarantees also extend to noisy
measurements and approximate structural assumptions.

Somewhat surprisingly, when the nonzero entries of the struc-
tured covariance matrix experience power-law decay – a property
known as compressibility in compressed sensing literature [16, 17],
the proposed algorithm enables exact recovery as soon as the number
of measurements exceeds the fundamental sampling limits. For the
special case of rank-one matrices, our result recovers and strength-
ens the best-known recovery guarantees for sparse phase retrieval
using convex optimization [12].

1.2. Related Work

Recovery of simultaneously structured matrices from a small num-
ber of linear measurements has recently received much attention
[15]. It has been shown in [15] that convex relaxation methods that
use a weighted sum of penalties with respect to each individual struc-
ture can do no better, orderwise, than a convex relaxation approach
that employs only one penalty. While our algorithm confirms these
results, a gain in the under-sampling ratio may be achieved when the
covariance matrix is compressible, as will be made clear in Section 3.

Our covariance estimation method is inspired by recent advances
in phase retrieval [13, 14, 18–24], which is equivalent to recovering
rank-one covariance matrices from quadratic measurements. When
the signal x is sparse with only k nonzero entries, the lifted matrix
X = xxT is simultaneously low-rank and sparse with rank one and
sparsity level k2. For this special case, our algorithm coincides with
the sparse Phaselift algorithm studied in [12]. It is established in [12]
that O(k2 logn) Gaussian measurements suffice to recover any k-
sparse signal x. Our paper strengthens the performance guarantee
therein to hold universally for all k-sparse signals under a larger
class of sub-Gaussian sensing vectors, and we demonstrate that even
approximately sparse signals can be faithfully recovered with an or-
derwise equivalent number of measurements.

1.3. Organization

The rest of the paper is organized as follows. Section 2 describes the
problem formulation and signal models. Section 3 presents the main
theoretical findings, and we outline its proof in Section 4. Finally,
we conclude the paper in Section 5.

2. SIGNAL MODELS

In this section, we describe the sampling model in (1), and the si-
multaneous structured model of the covariance matrices considered
in this paper.

2.1. Measurement Model

Random sampling has been proven to be very effective in preserving
information content from a small number of linear measurements,
for example in compressed sensing [16, 17]. We explore the follow-
ing random sampling model as presented in [10], which is able to
effectively exploit the presumed low-dimensional joint structure, as

will be shown in Section 3. We assume that the measurement vec-
tors are composed of i.i.d. sub-Gaussian entries. In particular, ai’s,
i = 1, . . . ,m, are i.i.d. copies of a = [a1, · · · , an]T , where each
ai is chosen i.i.d. from a distribution satisfying

E[ai] = 0, E[a2
i ] = 1, and µ4 := Ea4

i > 1. (3)

We further assume that the noise η := [η1, · · · , ηm]T is bounded in
`1 norm deterministically as

‖η‖1 ≤ ε, (4)

where ε is known a priori.
For notational simplicity, let Ai := aia

T
i represent the ith

measurement matrix, and hence yi := 〈Ai,Σ〉 + ηi. We also de-
fine the linear operator A(M) : Rn×n 7→ Rm that maps a matrix
M ∈ Rn×n to {〈M ,Ai〉}mi=1. These notations allow us to express
(1) as

y = A(Σ) + η. (5)

2.2. Simultaneous Low-rank and Sparse Covariance Structures

We consider structured covariance matrices that are simultaneously
low-rank and sparse. Specifically, suppose that the covariance matrix
Σ can be decomposed into two components

Σ := ΣΩ + Σc, (6)

where ΣΩ is the main component that is simultaneously sparse and
low-rank, and Σc denotes the residual term that might arise due to
imperfect structural assumptions. The rank of ΣΩ is denoted by r.
More specifically, we assume that the eigen-decomposition of ΣΩ is
given by

ΣΩ = UΛUT � 0, (7)
where U := [u1, · · · ,ur] consists of all r eigenvectors of ΣΩ.
Without loss of generality, we assume that for all 1 ≤ i ≤ r,
supp (ui) ⊆ ω for some index set ω ⊆ {1, · · · , n}, where
supp (ui) denotes the support (set of indices containing nonzero
entries) of ui, and the cardinality of ω is |ω| = k. Let

Ω := ω × ω,

which is the support of ΣΩ obeying |Ω| = k2. To summarize, ΣΩ

is simultaneously low-rank (with rank r) and sparse (with sparsity
level k2). The degrees of freedom underlying ΣΩ is about Θ (kr).

As a useful example, denote the best k-term approximation of
a vector x as xΩ = argminz:‖z‖0=k ‖x− z‖F. Then the rank-
one matrix Σ = xxT can be decomposed into ΣΩ = xΩx

T
Ω and

Σc = Σ−ΣΩ.

3. ALGORITHM AND THEORETICAL GUARANTEES

When Σ is known to be simultaneously low-rank and sparse, a nat-
ural heuristic is to attempt recovery via weighted rank minimization
and `0 minimization:

Σ̂ = argminM rank(M) + γ‖M‖0 (8)
subject to M � 0, ‖y −A(M)‖1 ≤ ε,

where γ is the parameter that provides a tradeoff between the low-
rank and sparse structural assumptions. However, both the rank min-
imization and the `0 minimization problem are in general NP-hard.
Therefore, we consider an alternative convex formulation

Σ̂ = argminM tr(M) + λ‖M‖1 (9)
subject to M � 0, ‖y −A(M)‖1 ≤ ε.
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Here, λ is a regularization parameter that balances the two convex
surrogates (i.e. the trace norm and the `1 norm) associated with
the low-rank and sparse structural assumptions, respectively. This
objective function has also been proposed in [12] for sparse phase
recovery, and discussed in [15] with linear Gaussian measurements.

Our analysis ensures stable recovery of jointly low-rank and
sparse covariance matrices, as stated in the following theorem.

Theorem 1. Assume ai’s are generated i.i.d. with sub-Gaussian
entries satisfying (3). Set λ to be any number within the interval[

1
n
, 1
NΣ

]
where

NΣ := max

2 ‖Pnsd (sign (ΣΩ))‖ ,

√
k
∑r
i=1 ‖ui‖

2
1

2r

 . (10)

Then with probability at least 1−exp (−c3m), the solution Σ̂ to (9)
satisfies ∥∥∥Σ̂−ΣΩ

∥∥∥
F
≤ C1√

r

(
‖Σc‖∗ + λ ‖Σc‖1 +

ε

m

)
(11)

for all matrices Σ ∈ Rn×n of the form (6), provided that

m >
C2

λ2
r logn, (12)

where C1, C2 and c3 are some universal positive constants. Here,
Pnsd (M) denotes the projection of M onto the negative semidefi-
nite cone, and sign(M) is the sign matrix ofM .

Theorem 1 provides the first theoretical guarantee for stable co-
variance estimation under the simultaneous structure model using
quadratic measurements. When the covariance matrices are simulta-
neously low-rank and sparse (i.e. Σc = 0), and the measurements
are noise-free with ε = 0, the algorithm (9) recovers Σ exactly
as soon as (12) is satisfied. The number m of measurements re-
quired for exact recovery depends on a quantity NΣ as defined in
(10), which consists of two terms as described below. The proof of
Theorem 1 is sketched in Section 4.

3.1. Worst-Case Analysis

We first consider the general bounds. The first term ‖Pnsd (sign (ΣΩ))‖
can be bounded above by

‖Pnsd (sign (ΣΩ))‖ ≤ ‖sign (ΣΩ)‖ ≤ ‖sign (ΣΩ)‖F = k.

The second term
√
k
∑r
i=1 ‖ui‖

2
1 /(2r) characterizes the average

compressibility of ui’s. A worst case bound can be derived as fol-
lows √

k
∑r
i=1 ‖ui‖

2
1

2r
≤

√√√√k
∑r
i=1

(√
k ‖ui‖2

)2

2r
= k,

which arises when all entries of ui’s have the same magnitude.
Combining the above bounds, a worst-case analysis yields an upper
bound NΣ ≤ 2k, which in turn implies that m = O(k2r logn)
measurements suffice for exact recovery. This indicates that there
is a performance gap between the achievable performance of (9)
and the theoretical limit O(kr). A similar observation is also made
in [15] for the Gaussian linear measurement model. Furthermore,
the convex algorithm (9) enables stable recovery against imperfect

structural assumptions as well as against bounded noise from (11),
provided that the number m of measurements is sufficiently large.

We now present a numerical example with n = 40. We first
randomly generate ω with a support size |ω| = k = 6, then gen-
erate Σ = ΣΩ = UUT with U ∈ Rn×r . The entries of each
row of U contained in the index set ω are generated with i.i.d. stan-
dard Gaussian entries with the rest of the entries set to 0. The mea-
surement vectors are generated with i.i.d. standard Gaussian en-
tries. Fig. 1 shows the normalized mean squared error (NMSE)
‖Σ̂ − Σ‖F/‖Σ‖F of (9) by setting λ = 1 in the absence of noise
for various ranks r = 1, 2, 3.
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Fig. 1. The NMSE of the reconstructed covariance matrix v.s. the
number of samples via (9) with λ = 1 when n = 40 and k = 6.

3.2. Near-Optimal Estimation for Compressible Models

Although there is a gap ofO (k logn) between the worst-case bound
of Theorem 1 and the theoretic limit, in many situations we can ob-
tain a much better bound of NΣ that significantly improves the con-
dition for perfect recovery.

Consider Σ = ΣΩ. If each row of sign (ΣΩ) is random, then
on average ‖sign (ΣΩ)‖ can be as low as

‖sign (ΣΩ)‖ = O
(√

k poly (log k)
)
, (13)

where poly (log k) denotes any polynomial function of log k. On
the other hand, if the nonzero entries of all eigenvectorsui’s satisfy a
power law decay such that the lth largest entry magnitude is bounded
by O

(
l−α
)

for some decaying exponent α ≥ 1, then one has

‖ui‖1 = O (log k) , (14)

which leads to
√
k
∑r
i=1 ‖ui‖

2
1 /2r ≤

√
k log k.

When both (13) and (14) are satisfied, one hasNΣ ≤
√
k poly (logn) .

In this case, by setting λ := 1/(
√
k poly(logn)), one obtains exact

covariance estimation as soon as m is about the order of

kr poly (logn) ,

which achieves the theoretic sampling limit except for a logarithmic
factor.

3.3. Applications to Sparse Phase Retrieval

As a special case, Theorem 1 immediately leads to a theoretical
guarantee for sparse signal recovery from magnitude measurements.
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Specifically, suppose that the true signal x is sparse, and the goal is
to recover x from a small number of phaseless measurements. The
measurements we obtain can be expressed as

y :=
{
|〈ai,x〉|2 + ηi

}
1≤i≤m ,

where ai represents the random measurement vector, and the noise
term η has bounded `1 norm ‖η‖1 ≤ ε. When x is exactly k-sparse,
the lifted matrix Σ := xxT has rank 1 and sparsity level k2. For an
approximately sparse signal x, we let ΣΩ = xΩx

T
Ω. Instantiating

Theorem 1 to this rank-1 case, we observe that

Pnsd (sign (ΣΩ)) = Pnsd

(
sign (xΩ) sign (xΩ)T

)
= 0,

which results in ‖Pnsd (sign (ΣΩ))‖ = 0. We then have the follow-
ing corollary.

Corollary 1. Assume the ai’s are generated i.i.d. with sub-
Gaussian entries satisfying (3). Set λ to be any number within
the interval

[
1
n
, 1√

k

‖xΩ‖F
‖xΩ‖1

]
. Then with probability at least 1 −

exp (−c3m), the solution X̂ to (9) satisfies∥∥∥X̂ − xΩx
T
Ω

∥∥∥
F
≤ C1

{∥∥∥xxT − xΩx
T
Ω

∥∥∥
∗

+

λ
∥∥∥xxT − xΩx

T
Ω

∥∥∥
1

+
ε

m

}
(15)

for all signals x ∈ Rn, provided that m > C2 logn
λ2 , where C1, C2

and c3 are some universal positive constants. Here, xΩ denotes the
best k-sparse approximation of x.

Corollary 1 recovers all theoretical performance guarantees of
sparse phase retrieval established in [12], and improves upon them
in two aspects. (i) Corollary 1 establishes the performance guaran-
tees of the algorithm (9) when the signal is approximately sparse and
when the measurements are noisy. The estimation inaccuracy due to
noise corruption is also small, in the sense that it is at most propor-
tional to the per-entry noise level. (ii) Corollary 1 established the
performance guarantees for a large class of sub-Gaussian measure-
ment vectors, while [12] only considers Gaussian measurements.

In general, by setting λ = 1/k, one can obtain universal re-
covery for all k-sparse signals from O

(
k2 logn

)
samples with ex-

ponentially high probability. Somewhat surprisingly, if the decay
rate of the nonzero entries of a k-sparse signal x is known a priori,
then the algorithm (9) allows near-optimal recovery. For instance,
suppose that the non-zero entries of x satisfies the power-law de-
cay such that the magnitude of the lth largest entry of xω/ ‖xω‖F is
bounded above by cpl/l

α for some constants cpl and exponent α > 0.

If α > 1, then by setting λ = Θ
(

1√
k logn

)
, one can obtain accurate

recovery from O
(
k log2 n

)
samples under sub-Gaussian sampling,

which is only a logarithmic factor from the theoretic sampling limits
(which is Θ (k)).

4. PROOF OUTLINE OF THEOREM 1

Due to the space limit, we only present an outline of the proof
of Theorem 1. The analysis framework is established upon the
novel mixed-norm restricted isometry property RIP-`2/`1 proposed
in [10], for which the input and output are measured in terms of the
Frobenius norm and the `1 norm, respectively. This differs subtly
from the conventional restricted isometry property that measures the
input and output using the same norm, and turns out to simplify the
proof significantly. The RIP-`2/`1 of an operator B for the family
of low-rank plus sparse matrices are defined as below.

Definition 1 (RIP-`2/`1 for low-rank plus sparse matrices). For
the set of matrices

Mr,k =
{
X1 +X2 | rank (X1) ≤ r, ‖X2‖0 ≤ k

}
,

we define the RIP-`2/`1 constants δlb
r,k and δub

r,k w.r.t. an operator B
as the smallest numbers such that ∀X ∈Mr,k:(

1− δlb
r,k

)
‖X‖F ≤

1

m
‖B (X)‖1 ≤

(
1 + δub

r,k

)
‖X‖F .

The RIP for this class is of particular importance when the ob-
jective function is a weighted sum of ‖·‖∗ and ‖·‖1. Note that A
does not satisfy RIP-`2/`1. We thus introduce a set of auxiliary
zero-mean measurement matrices

Bi := A2i−1 −A2i, (16)

and let B (X) represent the linear transformation that maps X
to {〈Bi,X〉}bm/2ci=1 . It can be shown that B satisfies the RIP-
`2/`1 with high probability, provided that m is about the order of
r logn/λ2. This specialized RIP-`2/`1 concept allows us to prove
Theorem 1 through the following lemma.

Lemma 1. Set λ to be any number within the interval
[

1
n
, 1
NΣ

]
,

whereNΣ is defined in (10). If there exists a numberK1 (andK2 :=⌈
K1
λ2

⌉
) such that

1−δlb2K1,2K2√
3

−
6
(
1+δub

K1,K2

)√
r

√
K1

max

{
4
(
1+δub

K1,K2

)√
r

√
K1

, 2

} ≥ β3 > 0, (17)

4
(
1 + δub

K1,K2

)√
r(

1− δlb
K1,K2

)√
K1

≤ 1

β4
(18)

hold for some positive constants β3 and β4, then the solution Σ̂ to
(9) satisfies∥∥∥Σ̂−ΣΩ

∥∥∥
F
≤ C√

r

(
‖Σc‖∗ + λ ‖Σc‖1 +

ε

m

)
(19)

for some constant C that depends only on β3 and β4.

The existence of β3 and β4 as required in (17) can be guaranteed
via the establishment of RIP `2/`1 for B.

5. CONCLUSIONS

In this paper, we investigate estimation of covariance matrices un-
der a quadratic sampling model that yields energy measurements or
magnitude measurements. We consider a popular structural model
where the covariance matrix is assumed to be simultaneously sparse
and low-rank, and present theoretical guarantees for a convex relax-
ation based estimation algorithm.

Our results indicate that jointly structured covariance matri-
ces can be perfectly recovered from very few quadratic measure-
ments, provided that the sampling vectors are i.i.d. drawn from
sub-Gaussian distributions. Our results also demonstrate the sta-
bility and robustness of the convex program in the presence of
noise and imperfect structural assumptions. Interestingly, when the
nonzero entries of a covariance matrix satisfies a power-decay law,
perfect recovery can be achieved as soon as the number of sam-
ples is about the order of the theoretic sampling limit. Our results
subsume and improve upon the best-known performance guarantees
in convex-optimization based sparse phase retrieval, with a much
simpler proof.
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