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ABSTRACT

Deep architectures have recently been explored in hybrid hidden

Markov model/artificial neural network (HMM/ANN) framework

where the ANN outputs are usually the clustered states of context-

dependent phones derived from the best performing HMM/Gaussian

mixture model (GMM) system. We can view a hybrid HMM/ANN

system as a special case of recently proposed Kullback-Leibler di-

vergence based hidden Markov model (KL-HMM) approach. In KL-

HMM approach a probabilistic relationship between the ANN out-

puts and the context-dependent HMM states is modeled. In this pa-

per, we show that in KL-HMM framework we may not require as

many clustered states as the best HMM/GMM system in the ANN

output layer. Our experimental results on German part of Media-

Parl database show that KL-HMM system achieves better perfor-

mance compared to hybrid HMM/ANN and HMM/GMM systems

with much fewer number of clustered states than is required for

HMM/GMM system. The reduction in number of clustered states

has broader implications on model complexity and data sparsity is-

sues.

Index Terms— HMM/GMM, hybrid HMM/ANN, Kullback-

Leibler divergence based HMM, context-dependent subword units,

non-native speech recognition

1. INTRODUCTION

In conventional HMM-based automatic speech recognition (ASR)

systems, the emission distribution is modeled either using Gaussi-

an mixture models (GMM) which leads to so-called HMM/GMM

systems or artificial neural network (ANN) which leads to hybrid

HMM/ANN systems [1]. Traditionally, in hybrid HMM/ANN sys-

tems, the outputs of ANN represented context-independent phones

and each ANN output was related to a unique HMM state. This li-

mited the HMM topology to context-independent subword units.

In recent years, improvements in computer hardware and ma-

chine learning techniques have enabled using efficient methods for

training ANNs with more hidden layers and output units. The large

number of ANN output units allows to train hybrid HMM/ANN sys-

tems that can deal with a possibly large number of HMM states nee-

ded for modeling context-dependent phones. More specifically, the

ANN outputs are defined as the clustered context-dependent phones

derived from the HMM/GMM system [2, 3].
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xible acoustic data driven grapheme to acoustic unit conversion (AddG2SU),
by the Swiss NSF through the grants Flexible Grapheme-Based Automa-
tic Speech Recognition (FlexASR) and the National Center of Competence
in Research (NCCR) on Interactive Multimodal Information Management
(www.im2.ch).

Several studies have investigated the effect of number of hidden

units and hidden layers of ANN on the ASR performance in hybrid

HMM/ANN framework [2, 4]. In addition to number of layers and

size of layers, the choice of ANN output units and the way output

units are defined is also crucial. Most often, the output units of ANN

are clustered states of context-dependent phones derived from the

best performing HMM/GMM system [2, 3]. In [5], the number of

ANN outputs was tuned on the development set for hybrid and Tan-

dem systems.

In this paper, we first elucidate that hybrid HMM/ANN approach

is a special case of recently proposed Kullback-Leibler divergence

based hidden Markov model (KL-HMM) approach (Section 2). Mo-

re specifically, in hybrid HMM/ANN approach the relationship bet-

ween ANN outputs and HMM states is deterministic (deterministic

lexical model), whereas in KL-HMM approach the relationship bet-

ween ANN outputs and HMM states is probabilistic (probabilistic

lexical model). Then, we study the effect of the number of ANN

outputs on ASR performance for KL-HMM approach and compare

it with hybrid HMM/ANN and HMM/GMM approaches. We hypo-

thesize that with probabilistic lexical modeling, KL-HMM approach

can result in better systems with fewer number of ANN outputs com-

pared to number of clustered states in best-performing HMM/GMM

system.

We evaluate the hypothesis with ASR studies on German part of

MediaParl database that includes real speech data from Valais par-

liament of Switzerland (Sections 3 and 4). Finally we conclude in

Section 5.

2. BACKGROUND AND MOTIVATION

In this section, we first provide a brief overview of Kullback-Leibler

divergence based HMM (KL-HMM) approach and later relate it with

standard HMM/ANN approach. Finally, we present motivation for

the present study.

2.1. Kullback-Leibler divergence based HMM

Kullback-Leibler divergence based HMM (KL-HMM) is a posterior-

based ASR approach, where posterior probabilities of acoustic units

(for example, context-independent phones) estimated using an ANN

are directly used as feature observations [6, 7]. Let zt denote the

acoustic unit posterior feature vector estimated at time frame t,

zt = [z1t , . . . , z
d
t , . . . , z

D
t ]T

= [P (a1|xt), . . . , P (ad|xt), . . . , P (aD|xt)]
T

(1)

where xt is the acoustic feature (e.g., cepstral feature) at time frame

t, {a1, . . . , ad, . . . , aD} is the set of acoustic units, D is the number
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of acoustic units, and P (ad|xt) denotes the posterior probability of

acoustic unit ad given xt. We refer to zt as acoustic unit posterior

feature.

Let L= {l1, . . . , li, . . . , lI} be the set of lexical units (for exam-

ple, context-dependent subword units). For the sake of clarity here

we assume each lexical unit represents one HMM state. Each lexi-

cal unit li in the KL-HMM system is parameterized by a catego-

rical distribution yi = [y1

i , . . . , y
d
i , . . . , y

D
i ]T where 0 ≤ yd

i ≤ 1,
∑D

d=1
yd
i = 1, and yd

i = p(ad|li). Therefore, KL-HMM can be seen

as probabilistic lexical modeling approach in which the relationship

between acoustic units modeled by ANN and lexical units modeled

by KL-HMM is probabilistic [8, 9, 10].

The local score at each HMM state is the Kullback-Leibler (KL)

divergence between the acoustic unit posterior feature and the state

distribution,

S(yi, zt) =

D
∑

d=1

y
d
i log(

yd
i

zdt
) (2)

In this case yi acts as the reference distribution. KL-divergence

being an asymmetric measure, there are also other ways to estima-

te the local score. More specifically, reverse KL-divergence (RKL)

where acoustic unit posterior feature zt is the reference distributi-

on and symmetric KL-divergence (SKL) which is the average of KL

and RKL local scores.

The KL-HMM parameters {yi}
I
i=1 are estimated using Viterbi

expectation maximization algorithm which minimizes a cost func-

tion that is based on KL-divergence. During testing, decoding is

performed using standard Viterbi decoder and the log-likelihood

based score in the standard Viterbi decoding is replaced with KL-

divergence based local score −S(yi, zt).

2.2. Relationship with Hybrid HMM/ANN approach

In standard hybrid HMM/ANN approach, the relationship between

acoustic units modeled by ANN and lexical units modeled by HMM

is deterministic [9]. The posterior probability of acoustic unit given

by the ANN is converted to scaled-likelihood of HMM state and is

used as local emission score [1],

psl(xt|qt = li) =
p(xt|qt = li)

P (xt)
=

P (ak|xt)

P (ak)
(3)

The lexical unit li is deterministically mapped to acoustic unit ak

modeled by ANN, where ak ∈ {a1, . . . , aD}.

In common practice, the outputs of ANN are divided with cor-

responding priors, to avoid the mismatch between relative frequen-

cies in acoustic data and relative frequencies given by pronunciati-

on and language models. However, in theory, HMMs can be trained

and decoded using posterior probabilities of acoustic units direct-

ly [1, 11]. In that sense, hybrid HMM/ANN approach can be seen as

special case of KL-HMM approach when the relationship between

acoustic and lexical units is deterministic and the local score is KL-

divergence as given in Eqn (2). More precisely, if lexical unit li is

deterministically mapped to acoustic unit ak (li 7→ ak), then the

state distribution yi is a Kronecker delta distribution, where

y
d
qt=i =

{

1, if d = k ;
0, otherwise.

and the local score S(yi, zt) is -logP (ak|xt).

2.3. Motivation for the Present Study

Earlier, in hybrid HMM/ANN systems, the acoustic units were

context-independent phones and were typically modeled using ANN

with one hidden layer. The main limitation of hybrid HMM/ANN

systems was the difficulty in modeling context-dependent subword

units. Since, each ANN output is deterministically related to a HMM

state, it is necessary that ANN models all the context-dependent sub-

word units. However, training ANN that models all possible context-

dependent subword units is impractical, owing to complexity and

data sparseness issues.

On the other hand, HMM/GMM systems are able to efficient-

ly model context-dependent subword units through state clustering

and tying. The decision tree based state clustering is used to auto-

matically cluster the context-dependent subword units into clustered

acoustic units (commonly referred to as physical states). A context-

dependent subword unit is modeled with three HMM states and each

HMM state is often deterministically related to one of the acoustic

units (deterministic lexical modeling).

Recently, hybrid HMM/ANN systems are extended along the li-

nes of HMM/GMM systems [2, 3]. More specifically, ANNs with

more than one hidden layer are used to classify clustered acoustic

units. Each HMM state representing a possible context-dependent

phone (lexical unit) is deterministically related to one of the acoustic

units. Most often, the number of output units of ANN is fixed to the

number of clustered context-dependent phones of best performing

HMM/GMM system [2, 3].

It has been shown that the KL-HMM approach can perform si-

milar to or better than hybrid HMM/ANN and HMM/GMM systems

when trained using context-independent phones as acoustic units and

context-dependent phones as lexical units [12, 9]. In this paper,

we extend the investigations using KL-HMM approach along the li-

nes of recent hybrid HMM/ANN approaches. More precisely, we

use context-dependent clustered states as acoustic units and context-

dependent phones as lexical units. Furthermore, we hypothesize that

KL-HMM approach may not require as many acoustic units as best

performing HMM/GMM system because the approach models pro-

babilistic relationship between acoustic and lexical units, in addition

to using a discriminative acoustic model, i.e., ANN.

3. EXPERIMENTAL SETUP

In this section, we provide details of the MediaParl database used in

experiments and explain the setup of HMM/GMM, HMM/ANN and

KL-HMM systems used for evaluation.

3.1. Database

We used the German part of MediaParl database for evaluation [13].

MediaParl is a bilingual corpus containing data (debates) in both

Swiss German and Swiss French which were recorded at the Valais

parliament in Switzerland. Valais is a state which has both French

and German speakers with high variability in local accents speci-

ally among German speakers. Therefore, MediaParl provides a real-

speech corpus that is suitable for ASR studies in particular for accen-

ted and non-native speech. In this paper, we study ASR performance

for both native and non-native speakers.

In our experiments, audio recordings with 16 kHz sampling ra-

te are used. The database is partitioned into training, development

and test sets following the structure given in [13]: 90% of the native

speakers (who speak only one language) form the training set (of 14

hours and 73 speakers) and the remaining 10% form the develop-

ment set (of 2 hours and 8 speakers). The test set (of 4 hours and 7

7710



speakers) contains the speakers who speak in both French and Ger-

man. Four speakers are bilingual speakers with German as their na-

tive language and for three speakers, French is the native language.

We refer to the utterances of speakers with German as their native

language as native speech (1605 utterances) and German utteran-

ces from speakers with French as their first language as non-native

speech (87 utterances).

The MediaParl corpus dictionary is provided in SAMPA format

with a phone set of size 57 (including sil) and contains all the words

in the train, development and test set. The vocabulary size is 16755

words. For the language model, we used a bigram model on trans-

criptions of the training set as well as EuroParl corpus (which con-

sists of about 50 million words for each language).

3.2. Systems

HMM/GMM systems: We trained standard context-independent

and cross-word context-dependent HMM/GMM systems with 39

dimensional PLP cepstral features extracted using HTK toolkit [14].

We tuned the number of Gaussians for both context-independent

and context-dependent systems on the development set. For

context-dependent HMM/GMM systems we also tuned the number

of clustered states. The best performing context-independent system

used 128 Gaussians and the best performing context-dependent

system had 3000 clustered states with 16 Gaussians per clustered

state.

Multilayer perceptrons (MLPs): For hybrid HMM/ANN and KL-

HMM systems, we studied various ANNs, more precisely, MLPs

that vary in terms of number of MLP layers or output units. We

used 39-dimensional PLP cepstral features with four frames prece-

ding context and four frames following context as MLP input. All

the MLPs were trained with output non-linearity of softmax and mi-

nimum cross-entropy error criterion, using Quicknet software [15].

We investigated the following MLPs:

• MLP-3L-CI-57: a standard 3-layer MLP modeling context-

independent phones (which are of size 57) as output units. The

number of parameters was approximately 0.8M.

• MLP-5L-CI-57: a 5-layer MLP modeling context-independent

phones as output units. This MLP had an architecture of 351 x

2000 x 2000 x 2000 x 57 with about 8.8M parameters.

• MLP-5L-CD-N: a 5-layer MLP modeling N context-

dependent clustered phones as outputs where N ∈
{195, 385, 549, 759, 1101, 3000}. The output units were

derived by clustering context-dependent phones in HMM/GMM

framework using decision tree state tying. The different number

of acoustic units were derived by adjusting the log-likelihood

difference. All the 5-layer MLPs had roughly the same number

of parameters (≈ 8.8M). More precisely, each 5-layer MLP had

an architecture of 351 x 2000 x HU x 2000 x N and the number

of middle layer hidden units HU was adjusted so as to keep the

number of parameters constant.

Hybrid HMM/ANN systems: We estimated the scaled likelihoods

in hybrid HMM/ANN system by dividing the posterior probabilities

P (ak|xt) derived from MLP with the priori probability of acoustic

unit P (ak) estimated from relative frequencies in the training data.

These scaled likelihoods were used as emission probabilities for

HMM states.

KL-HMM systems: KL-HMM systems used acoustic units pos-

terior probabilities as feature observations and modeled context-

dependent (tri) phones. The KL-HMM parameters were trained by

minimizing the cost functions based on local scores KL, SKL and

RKL (as described in Section 2) and the local score that resulted in

minimum KL-divergence on training data was selected. In most of

the cases RKL resulted as the local score. For tying KL-HMM (lexi-

cal) states we applied KL-divergence based decision tree state tying

method proposed in [16].

For all the systems, each lexical unit was modeled with three

HMM states. In addition, the parameters of systems (such as lan-

guage scaling factor and word insertion penalty) were tuned on the

development set.

4. RESULTS AND ANALYSIS

In this section, we first present ASR studies on MediaParl corpus and

then analyze the results for native and non-native speech.

4.1. Effect of Number of Acoustic Units on ASR Performance

Figure 1 presents the results in terms of word error rate (WER) for

HMM/GMM, hybrid HMM/ANN and KL-HMM systems with va-

rying number of acoustic units.
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Fig. 1. Overall performance in terms of WER for different systems

with varying number of acoustic units.

It can be observed from Figure 1 that:

• For HMM/GMM system, as the number of acoustic units is incre-

ased, the WER decreases.

• Similar trend exists for HMM/ANN system. However, when N ≥
549 the decrease in WER is not statistically significant.

• The WER of KL-HMM system is less sensitive to the number of

acoustic units N . The system achieves optimal WER with fewer

number of acoustic units (N = 549) compared to HMM/GMM

framework (N = 3000).

• Irrespective of the number of acoustic units, KL-HMM system

results in best performance.

Indeed, these results show the validity of hypothesis that KL-HMM

system may not need as many acoustic units as best performing

HMM/GMM system. The acoustic model complexity (in terms of

number of parameters) of HMM/GMM system increases with incre-

asing N whereas, in the case of hybrid HMM/ANN and KL-HMM

systems, the acoustic model complexity is constant with increasing

N (≈ 8.8M). The hybrid HMM/ANN and KL-HMM systems could

probably improve with increasing N if relatively large amount of

training data was available.

Table 1 summarizes the best results for HMM/GMM, hybrid

HMM/ANN and KL-HMM systems along with the total number of

acoustic and lexical model parameters. The acoustic and lexical mo-

del parameters are calculated following the procedure given in [10].
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Systems θa θl WER

HMM/GMM 3.8M 185K 26.6

Hybrid-MLP-5L-CD-1101 8.8M 185K 25.5

KL-HMM-MLP-3L-CI-57 0.8M 412K 26.8

KL-HMM-MLP-5L-CI-57 8.8M 397K 24.4

KL-HMM-MLP-5L-CD-549 8.8M 5M 22.6

Table 1. Overall results in terms of WER for different systems when

modeling context-dependent (tri) phones. θa , θl denote the number

of parameters in acoustic and lexical model respectively.

KL-HMM and hybrid HMM/ANN systems are denoted along with

the MLP used. The table also provides the WER of KL-HMM-MLP-

3L-CI-57 and KL-HMM-MLP-5L-CI-57 systems to understand the

effect of deeper MLP architecture on ASR performance in KL-HMM

framework. From Table 1 it can be observed that:

• The Hybrid-MLP-5L-CD-1101 system performs better than the

best performing HMM/GMM1 system with 4.3% relative impro-

vement which is in line with recent studies on deep MLP archi-

tectures for acoustic modeling in ASR [3].

• The KL-HMM-MLP-3L-CI-57 system performs similar to

HMM/GMM system, despite using fewer number of parameters

and modeling only context-independent phones as acoustic units.

• The KL-HMM-MLP-5L-CI-57 system that uses more layers, per-

forms better than KL-HMM-MLP-3L-CI-57 system with 2.4% ab-

solute improvement [17]. Also, the performance of KL-HMM-

MLP-5L-CI-57 system, in spite of using context-independent

acoustic units, is better than Hybrid-MLP-5L-CD-1101 system

that uses context-dependent acoustic units.

• The Hybrid-MLP-5L-CD-1101, KL-HMM-MLP-5L-CI-57 and

KL-HMM-MLP-5L-CD-549 systems have same complexity in

terms of number of acoustic model parameters. The difference in

the performance between the systems is due to the difference in

the number of MLP outputs and the lexical model (deterministic

or probabilistic).

• The KL-HMM-MLP-5L-CD-549 system that uses context-

dependent acoustic units performs significantly better than every

other system in the table (with at least 99% confidence).

4.2. Analysis for Native and Non-Native Speech

Figure 2 shows the performance of the systems in terms of WER

with varying number of acoustic units for both native and non-native

speech on MediaParl test set. It can be observed that in general, as

number of acoustic units is increased, the WER on native speech

decreases. On the other hand, as number of acoustic units is increa-

sed, the WER on non-native speech eventually increases for all the

three systems. This effect can be better seen for hybrid HMM/ANN

and KL-HMM systems, where using context-independent phones as

acoustic units resulted in lower WER for non-native speech. This

suggests that, when the training data includes only the native speech,

as done in this study, increasing the number of acoustic units may not

be beneficial for non-native speech recognition. We intend to investi-

gate this aspect further on French part of MediaParl database which

contains more non-native utterances.

1The accuracy of HMM/GMM system reported in [13] was lower compa-
red to our result, as speech data with sampling rate of 8 kHz was used.
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Fig. 2. Performance of the systems in terms of WER with varying

number of acoustic units for both native and non-native speech.

5. DISCUSSION AND CONCLUSION

In this paper, we studied different systems, namely, standard

HMM/GMM system, hybrid HMM/ANN system and KL-HMM sys-

tem. On the outset, these systems seem to be very different. Howe-

ver, all these systems can be explained through one-and-same prin-

ciple i.e., ASR by matching a sequence of “latent” symbols based

on acoustic information with a set of reference sequences of latent

symbols based on lexical and syntactic information. In other words,

we are performing ASR by generating a sequence of latent symbols

based on acoustic information and matching it with a sequence of la-

tent symbols corresponding to each word hypothesis generated using

lexical and syntactical information. In that sense, the systems inves-

tigated in this paper differ on four fundamental issues,

1. latent symbol set: context-independent phone or context-

dependent clustered phone states.

2. modeling of relationship between latent symbols and acoustic

signal (acoustic model): HMM/GMM system uses a generative

model while hybrid HMM/ANN system and KL-HMM system

use a discriminative model2.

3. modeling of relationship between latent symbols and lexical

(subword) units (lexical model) [8, 9]: in HMM/GMM and hybrid

HMM/ANN systems the relationship is one-to-one deterministic

map while in KL-HMM system the relationship is probabilistic.

4. cost function to match (locally) the symbol sequences [9]: in both

HMM/GMM system and hybrid HMM/ANN system it is log of

dot product between acoustic model likelihood vector and lexical

model (Kronecker delta) posterior probability vector, while in the

case of KL-HMM it is the KL-divergence between acoustic mo-

del posterior probability vector and lexical model posterior pro-

bability vector. The size of the likelihood/posterior probability

vector depends upon the cardinality of the latent symbol set.

Language modeling and efficient search of output word hypothesis

using dynamic programming are common aspects for all these sys-

tems. Our studies show that KL-HMM approach, which uses dis-

criminative acoustic model, probabilistic lexical model and discri-

minative local score [18], can achieve better system than standard

HMM/GMM system and hybrid HMM/ANN system with fewer la-

tent symbols. Our future work will focus towards a) use of latent

symbols obtained with more than single preceding and following

context and b) use of latent symbols extracted without using pho-

neme information [8].

2KL-HMM approach is also applicable to generative acoustic model [8]

7712



6. REFERENCES

[1] N. Morgan and H. Bourlard, “Continuous Speech Recogni-

tion: An Introduction to the Hybrid HMM/Connectionist Ap-

proach,” IEEE Signal Processing Magazine, pp. 25–42, May

1995.

[2] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-Dependent

Pre-trained Deep Neural Networks for Large Vocabulary

Speech Recognition,” in IEEE Trans. on Audio, Speech, and

Language Processing, 2012.

[3] G. Hinton et al., “Deep Neural Networks for Acoustic Mode-

ling in Speech Recognition: The Shared Views of Four Rese-

arch Groups,” IEEE Signal Processing Magazine, vol. 29, no.

6, pp. 82–97, 2012.

[4] O. Vinyals and N. Morgan, “Deep vs. Wide: Depth on a Budget

for Robust Speech Recognition,” in Proc. of Interspeech, 2013.
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