
GENERALIZED QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMMING FOR
SIGNAL PROCESSING

Arash Khabbazibasmenj† and Sergiy A. Vorobyov†,∗

†Dept. of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
∗ Department of Signal Processing and Acoustics, Aalto University, Finland

Emails: khabbazi@ualberta.ca, svor@ieee.org

ABSTRACT

In this paper, we introduce and solve a particular generaliza-
tion of the quadratically constrained quadratic programming
(QCQP) problem which is frequently encountered in differ-
ent fields of signal processing and communications. Specifi-
cally, we consider such generalization of the QCQP problem
that comprises compositions of one-dimensional convex and
quadratic functions in the constraint and the objective func-
tions. We show that this class of problems can be precisely
or approximately recast as the difference-of-convex functions
(DC) programming problem. Although the DC programming
problem can be solved through the branch-and-bound meth-
ods, these methods do not have any worst-case polynomial-
time complexity guarantees. Therefore, we develop a new ap-
proach with worst-case polynomial-time complexity that can
solve the corresponding DC problem of a generalized QCQP
problem. It is analytically guaranteed that the point obtained
by this method satisfies the Karsuh-Kuhn-Tucker (KKT) opti-
mality conditions. Furthermore, the global optimality can be
proved analytically under certain conditions. The new pro-
posed method can be interpreted in terms of the Newton’s
method as applied to a non-constrained optimization problem.

Index Terms— Generalized QCQP problem, DC pro-
gramming, polynomial-time algorithms, array processing,
cooperative communications.

1. INTRODUCTION

Convex optimization problems form the largest known class
of optimization problems that can be efficiently addressed.
As opposed to the convex optimization problems, the non-
convex problems are usually extremely hard to deal with.
Although the non-convex optimization problems are inher-
ently very challenging, it is still possible to solve some of
these problems by means of convex optimization techniques.
Specifically, it is sometimes possible to relax a non-convex
problem into a set of convex problems and then extract the
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optimal solution of the original problem from the solution of
the convexly relaxed problems [1] –[3].

Quadratically constrained quadratic programming (QCQP)
problem is one of the important classes of non-convex opti-
mization problems which is very frequently encountered in
different applications. Despite being exceedingly difficult,
QCQP problems can be approximately solved using the semi-
definite programming relaxation (SDR) techniques [1], [4] –
[7]. SDR is a powerful and computationally efficient method
which relaxes the non-convex problem into a convex problem
and then extracts a suboptimal solution of the QCQP problem
from the optimal solution of the convexly relaxed problem.

Despite the profound importance of the QCQP optimiza-
tion problem and its approximate solution in the related fields,
the more general form of these problems have not been stud-
ied thoroughly. Specifically, the QCQP problems can be gen-
eralized to include the composition of one-dimensional con-
vex and quadratic functions in the objective and the constraint
functions. In this paper, we show that such generalized QCQP
problem can be precisely or approximately represented as the
difference-of-convex functions (DC) programming problems
which appear often in signal processing applications [8].
The existing most typical approaches developed for address-
ing DC programming problems are based on the so-called
branch-and-bound methods [9] and [10] – [15]. However,
these methods do not have any (worst-case) polynomial-
time complexity guarantees which considerably limits or
often prohibits their applicability in signal processing prac-
tice. Accordingly, methods with guaranteed polynomial-time
complexity that can solve such DC programming problems at
least suboptimally are of great importance. Thus, we develop
a new approach with (worst-case) polynomial-time com-
plexity that can solve (optimally under some conditions) the
corresponding DC problem of a generalized QCQP problem.

2. GENERALIZED QCQP

We are mostly interested in the following generalization of the
QCQP which includes the composition of one-dimensional
convex and quadratic functions in the objective and the con-
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straint functions

min
x,y

f0(x
HA0x) + h0(y)

s.t. α2i−1f2i−1(x
HA2i−1x)− α2if2i(x

HA2ix)

+hi(y) ≤ 0, i = 1, · · · ,M (1)

where x ∈ Cm, y ∈ Rn, the sets Cm and Rn denote,
respectively, the m-dimensional complex space and the n-
dimensional Euclidean space, and fi : Dfi ⊂ R −→ R, i =
0, · · · , 2M are one-dimensional convex differentiable func-
tions. The function f0 is assumed to be a monotonic function
which is bounded from the below over the feasible set of the
problem. The matrices Ai ∈ Hm, i = 0, · · · , 2M are Her-
mitian matrices that can be indefinite, hi : Dhi ⊂ Rn −→
R, i = 0, · · · ,M are convex differentiable functions, and
αi ∈ {0, 1}, i = 1, · · · , 2M , depending whether the function
fi(x

HAix) is present or not. Similar to the function f0, the
convex function h0 is also assumed to be lower-bounded.

The motivation behind the generalized QCQP formula-
tion (1) is the fact that many important quantities in sig-
nal processing or communications have such composition
forms. For instance, such composite functions are frequently
encountered in the resource allocation problems. Particu-
larly, since the transmit power of a multi antenna system
and/or the received power of a single antenna receiver have
quadratic forms with respect to the transmit beamforming
vector/precoding matrix [16], the transmission rate, and the
signal-to-interference-plus-noise ratio (SINR) can be recast
in the forms of proposed compositions. Moreover, the cor-
responding objective function of the rate allocation schemes
based on different criteria such as, for example, the sum-
rate maximization [17], proportional and max-min rate fair-
ness [18], and resource allocation based on mean square error
(MSE) [19] are one form or another of the composition of
one-dimensional convex and quadratic functions. Due to
the aforementioned quadratic form of the transmit/received
power, the robust beamforming problems can usually be re-
cast in the form the proposed generalized QCQP [20], [21],
and [22].

3. REFORMULATION

By defining the additional variables δi, i = 1, 2, · · · , 2M and
the set C , { k | αk = 1, 1 ≤ k ≤ 2M}, the problem (1) can
be equivalently expressed as

min
y,δ,x

f0(x
HA0x) + h0(y)

s.t. xHAix = δi, i ∈ C (2)
α2i−1f2i−1(δ2i−1)−α2if2i(δ2i)

+hi(y) ≤ 0, i = 1, · · · ,M.

Since the function h0(y) as well as the constraint functions
α2i−1f2i−1(δ2i−1)− α2if2i(δ2i)+hi(y) ≤ 0, i = 1, · · · ,M

do not depend on x, the problem (2) can be recast as

min
y,δ

h0(y) +

[ Inner Optimization Problem︷ ︸︸ ︷
min

x | xHAix=δi, i∈C
f0(x

HA0x)

]
s.t. α2i−1f2i−1(δ2i−1)−α2if2i(δ2i)+hi(y) ≤ 0,

i = 1, · · · ,M. (3)

Then the problem (3) can be further expressed as

min
y,δ

f0(k(δ)) + h0(y)

s.t. α2i−1f2i−1(δ2i−1)−α2if2i(δ2i)+hi(y) ≤ 0,

i = 1, · · · ,M (4)

where k(δ) is an optimal value function (OVF) which is de-
fined based on the inner optimization problem in (3) for a
fixed value of δ ∈ D. Here, D is defined as the set of all
δ such that the corresponding optimization problem obtained
from k(δ) for fixed δ is feasible. If the function f0 is increas-
ing, i.e., f0(x1) ≤ f0(x2), for x1 ≤ x2, the OVF k(δ) is
defined as

k(δ) ,

{
min
x

xHA0x | xHAix = δi, i ∈ C
}
. (5)

In the rest of this paper, we assume that the function f0 is
increasing.1

4. PROPOSED SOLUTION

We first consider the case of card{C} ≤ 3 where card{·}
is the cardinality operator. In other words, we first con-
sider the case when the total number of composite functions
fi(x

HAix) in the constraints of the problem (1) does not
exceed three.

4.1. Number of quadratic functions in constraints is less
than or equal to three

In this case, by introducing the matrix X , xxH and observ-
ing that for any arbitrary matrix Y, the relationship xHYx =
tr{YxxH} holds, the OVF k(δ) in (5) can be equivalently
recast as

k(δ) =

{
min
X

tr{A0X} | tr{AiX} = δi, i ∈ C,

rank{X} = 1, X � 0

}
, δ ∈ D (6)

where rank{·} denotes the rank of a matrix and D is the do-
main of the OVF k(δ). Using the SDP relaxation, the opti-
mization problem of k(δ), when δ is fixed, can be relaxed

1The OVF k(δ) is similarly defined if the function f0 is decreasing and
all the following discussions are valid in this case as well.
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by dropping the rank-one constraint. Then the following new
OVF can be obtained

h(δ) ,

{
min
X

tr{A0X} | tr{AiX} = δi, i ∈ C,

X � 0

}
, δ ∈ D′ (7)

whereD′ is the domain of the newly defined OVF. For brevity,
we will refer to the optimization problems corresponding to
the functions k(δ) and h(δ) when δ is fixed simply as the
optimization problems of k(δ) and h(δ), respectively. The
following lemma finds the relationship between the domains
of the functions k(δ) and h(δ).

Lemma 1: The domains of the functions k(δ) and h(δ)
are the same, i.e., D = D′ if card{C} ≤ 3. Moreover, The
OVFs k(δ) and h(δ) are equivalent, i.e., k(δ) = h(δ), δ ∈ D
if card{C} ≤ 3 and some mild conditions are satisfied. Ad-
ditionally, based on the optimal solution of the problem h(δ)
the optimal solution of the problem k(δ) can be extracted.
This Lemma is an extension of similar lemma proved for a
particular generalized QCQP optimization problem in [21].

Although the OVFs k(δ) and h(δ) are equal, however,
compared to the optimization problem of k(δ) which is non-
convex, the optimization problem of h(δ) is convex. Using
this fact and replacing k(δ) by h(δ) in the original optimiza-
tion problem (2), this problem can be simplified as

min
y,δ,X

f0(tr{A0X}) + h0(y)

s.t. tr{AiX} = δi, i ∈ C, X � 0,

α2i−1f2i−1(δ2i−1)−α2if2i(δ2i)+hi(y) ≤ 0,

i = 1, · · · ,M. (8)

Therefore, instead of the original optimization problem
(2), we can solve the simplified problem (8) in which the
quadratic functions have been replaced with their corre-
sponding linear functions. It is noteworthy to mention
that in the simplified problem, the non-convex functions
fi(x

HAix), i = {0}
⋃
C are replaced by the convex func-

tions fi(tr{AiX}), i = {0}
⋃
C. The latter is due to the

fact that the composition of a convex function with a linear
function is also a convex function. Based on the optimal
solution of the simplified problem, denoted as Xopt, δopt,
and yopt, the optimal solution of the original problem can be
found. The optimal values of δ and y are equal to the corre-
sponding optimal values of the simplified problem, while, the
optimal value of x can be constructed based on Xopt using
rank-reduction techniques [23].

If the corresponding coefficients of the functions f2i, i =
1, · · · ,M , i.e., α2i, are all zero, then the problem (8) is con-
vex and it can be easily solved. Particulary, in this case, the
objective function and the constraint functions of the simpli-
fied problem (8) are all convex. Once this problem is solved,

the optimal x can be extracted using Lemma 1. However,
if any of such coefficients is non-zero, the problem (8) is no
longer convex and there exists a constraint which is the differ-
ence of two convex functions. Therefore, the problem (8) is a
DC programming problem. Although the problem (8) boils
down to the known family of DC programming problems,
still there exists no solution for such problems with guaran-
teed polynomial-time complexity. The typical approach for
solving such problems is the the branch-and-bound method
and its various modifications [9], [10] – [15]. It is known to
be an effective global optimization method. However, it does
not have any worst-case polynomial-time complexity guaran-
tees [11], [12]. It significantly limits or even prohibits its ap-
plicability in practical systems. Thus, methods with guaran-
teed polynomial-time complexity that can find at least a sub-
optimal solution for different types of DC programming prob-
lems are of a great importance. In what follows, we establish
an iterative method for solving the problem (8) when at least
one of the coefficients α2i, i = 1, · · · ,M is non-zero and
therefore the relaxed problem is DC.

4.2. Polynomial-time DC algorithm

An iterative method for solving the DC programming prob-
lem (8) at least suboptimally is developed. The essence of
the proposed method is to linearize the non-convex one-
dimensional functions −f2i(δ2i) appearing in the constraints

α2i−1f2i−1(δ2i−1)− α2if2i(δ2i) + hi(y) ≤ 0 (9)

around suitably selected points in different iterations. This
new proposed method will be referred to as the Polynomial-
time DC (POTDC). It is guaranteed that POTDC finds at
least a KKT point, i.e., a point which satisfies the KKT
optimality conditions. In order to explain the intuition be-
hind this method, let us replace the non-convex functions
−f2i(δ2i), i ∈ K , {i | α2i = 1} by their corresponding
linear approximations around the points δ2i,Lin, i ∈ K, i.e.,

−f2i(δ2i)≈−f2i(δ2i,Lin)−
df2i(δ2i)

dδ2i
|δ2i=δ2i,Lin(δ2i−δ2i,Lin).

(10)
Performing such replacement results in the following opti-
mization problem

min
y,δ,X

f0(tr{A0X}) + h0(y)

s.t. tr{AiX} = δi, i ∈ C, X � 0, (11)
α2i−1f2i−1(δ2i−1)+hi(y)≤0, i = 1,· · ·,M,

i /∈ K
α2i−1f2i−1(δ2i−1)− f2i(δ2i,Lin)

−df2i(δ2i)
dδ2i

|δ2i=δ2i,Lin(δ2i−δ2i,Lin)+hi(y)≤0,

i ∈ K.
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As compared to the original problem (8), the relaxed prob-
lem (11) is convex and can be efficiently solved up to a desired
accuracy using the interior point-based numerical methods.
For the fixed values of δ2i, i ∈ K denoted as ∆, let us de-
fine the OVFs f(∆) and g(∆,∆Lin) as the optimal value of
the optimization problems (8) and (11), respectively, in which
∆Lin denotes the set of linearizing points, i.e., δ2i,Lin, i ∈
K. Since the optimization problem (11) is convex, its corre-
sponding OVF g(∆,∆Lin) is also convex with respect to ∆
[21]. Furthermore, the OVF g(∆,∆Lin) provides an upper-
bound for the OVF f(∆), i.e., f(∆) ≤ g(∆,∆Lin). The
latter is due to the fact that the feasible set of the optimization
problem (11) is a subset of the feasible set of the problem (8).
Besides, with the assumption that the aforementioned OVFs
are differentiable, it can be proved that the OVF g(∆,∆Lin)
is a tangent to f(∆) at ∆ = ∆Lin. Since the aforemen-
tioned OVFs are tangents at the linearizing point, i.e., ∆Lin,
and f(∆) is upper-bounded by g(∆,∆Lin), the optimal min-
imizer of the function g(∆,∆Lin) denoted as ∆opt is a de-
creasing point for f(∆), that is, f(∆Lin) ≥ f(∆Opt). Based
on this observation, the POTDC method first solves the prob-
lem (11) for the arbitrary chosen initial point.

Once the optimal solution of this problem, denoted in
the first iteration as y

(1)
opt, X

(1)
opt, and δ

(1)
opt is found, the al-

gorithm proceeds to the second iteration by replacing the
functions −f2i(δ2i), i ∈ K by their linear approximations
around δ(1)opt,2i, i ∈ K, respectively, found from the previous
(initially first) iteration. In the second iteration, the resulting
optimization problem has the same structure as the problem
(11) in which δ2i,Lin, i ∈ K has to be set to δ(1)opt,2i, i ∈ K
obtained from the first iteration. This process continues,
and kth iteration consists of replacing −f2i(δ2i), i ∈ K by
their linearizations of type (10) using δ

(k−1)
opt found at the

iteration k − 1. It can be shown that the sequence of the
optimal values which are generated by proposed POTDC
method, i.e., f0(tr{A0X

(k)
opt}) + h0(y

(k)
opt), k = 1, 2, · · · , are

non-increasing and convergent. Moreover, if the proposed
POTDC method converges to a regular point, that point is a
KKT point, i.e., a point which satisfies the KKT optimality
conditions.

The proposed POTDC method can be interpreted in terms
of the Newton’s method when it is utilized to minimize a
non-constrained multi-dimensional function. Particularly, the
Newton’s method minimizes a sequence of quadratic approx-
imations of the non-constrained objective function succes-
sively. In a similar way, our proposed method also mini-
mizes a convex approximation of the optimal value function
f(∆) successively over the iterations. However as opposed
to the Newton’s method, the convex approximations of the
OVF f(∆) are not necessarily quadratic. We have utilized
this similarity for establishing a polynomial-time complexity
guarantee proof for the proposed POTDC method under some
conditions.

5. GENERAL FORM OF THE PROPOSED
SOLUTION

When the total number of the composite functions fi(xHAix)
in the constraints of the optimization problem (1) or equiv-
alently card{C} is greater than or equal to four, the OVFs
k(δ) in (5) and h(δ) in (7) may not be equal in general.
In this case, the OVF h(δ) is a lower-bound of k(δ), i.e.,
h(δ) ≤ k(δ) (h(δ) is an upper-bound of k(δ) if f0 is de-
creasing). By replacing the OVF k(δ) by h(δ) in the original
optimization problem (4), this problem can be approximated
by the following DC programming problem

min
y,δ

f0(h(δ)) + h0(y)

s.t. α2i−1f2i−1(δ2i−1)− α2if2i(δ2i) + hi(y) ≤ 0,

i = 1, · · · ,M. (12)

Since f0 is a monotonic function, it can be concluded that
the objective function of the optimization problem (12) is a
lower-bound of the original problem. Thus, instead of the
original objective function, the problem (12) aims at mini-
mizing a lower-bound of the objective function. The problem
(12) can be similarly solved by using the POTDC method.
The extraction of (in general suboptimal) solution of the orig-
inal problem from the optimal solution of the approximate
problem (12) can be done through the well known standard
randomization techniques.

6. CONCLUSION

A specific generalization of the QCQP optimization problem
which comprises compositions of one-dimensional convex
and quadratic functions in the constraints and the objective
function has been introduced. Moreover, it has been ex-
plained that many important practical problems boil down to
generalized QCQP which explains the significant importance
of this generalization. In order to solve this class of problems,
we have shown that the generalized QCQP can be precisely
or approximately recast as a DC progrmming problem by
means of SDR relaxation. Then we proposed a method for
solving the resulted DC optimization problems at least sub-
optimally with polynomial-time complexity guarantees. The
new proposed method can be interpreted in terms of the New-
ton’s method as applied to a non-constrained optimization
problem.

7. RELATION TO PRIOR WORK

In our previous works [17], [18], [20], and [21], we have ob-
served that some of the important problems in signal process-
ing and communications, such as, resource allocation or ro-
bust adaptive beamforming problems involve a generalized
form of a QCQP optimization. In this paper, we introduce and
solve such generalization of QCQP optimization which com-
prises compositions of one-dimensional convex and quadratic
functions in the constraints and the objective function.
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