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ABSTRACT

We consider a distributed detection system under communication
constraints, where several peripheral nodes observe a common phe-
nomenon and send their observations to a fusion center via error-
free but rate-constrained channels. Using the minimum expected er-
ror probability as a design criterion, we propose a cyclic procedure
for the design of the peripheral nodes using the person-by-person
methodology. It is shown that a fine-grained binning idea together
with a method for updating the conditional probabilities of the joint
index space at the fusion center, decrease the complexity of the al-
gorithm and make it tractable. Also, unlike previous methods which
use dissimilarity measures (e.g., the Bhattacharyya distance), a-prior
hypothesis probabilities are allowed to contribute to the design in the
proposed method. The performance of the proposed method is com-
pared to a method due to Longo et al.’s and it is shown that the new
method can significantly outperform the previous one at a compara-
ble complexity.

Index Terms— Decentralized detection, Bayesian criterion,
parallel network, person-by-person optimization.

1. INTRODUCTION

We consider a decentralized system where multiple sensors observe
the same phenomenon and send their observations to a central pro-
cessor or fusion center (FC) to make a global decision. If there
were no constraints on the communication channels, the sensors
could send their complete received data to the fusion center, and the
scenario is no different than the centralized case. However, when
the channels between the sensors and the fusion center are rate-
constrained, the sensors must send a compressed, or quantized, ver-
sion of the received data to the fusion center. In other words, each
sensor acts as a decision maker (DM) and sends its local decision
to the FC. A comprehensive survey of early works in decentralized
hypothesis testing can be found in [1–3].

The specific problem of quantization for decentralized detection
was considered by Longo et al. in [4], wherein the channels between
the sensors (also called peripheral nodes or DMs) and the fusion cen-
ter were also considered to be error-free. The peripheral nodes were
considered to be scalar quantizers that satisfied the rate constraints,
and were to be cooperatively designed according to a system-wide
measure of performance. Longo et al. argued that the natural crite-
rion of optimization – in their case the power of a Neyman-Pearson
test – made the design procedure intractable. They therefore pro-
posed to instead optimize a measure of dissimilarity between the
conditional distributions of the joint index space, i.e., the full set
of quantizer outputs. Their final design was obtained by a cyclic
person-by-person optimization algorithm for maximizing the Bhat-
tacharyya distance [5] between the conditional probability distribu-
tions under the two hypotheses, or equivalently for minimizing the

corresponding Bhattacharyya coefficient.

The Bhattacharyya distance, as a member of the Ali-Silvey class
of distribution measures [6], has a link to the error probability in a
Bayesian formulation of the problem. Namely, by Blackwell’s theo-
rem it follows that if one design (say, F) yields a larger distributional
distance (or in the present case a smaller Bhattacharyya coefficient)
than another design (say, G), there exits a set of a-prior hypothesis
probabilities under which F yields a lower (or, more precisely, no
greater) probability of error than G, see [4] and also [7]. It is also
possible to upper bound the minimum error probability of the fusion
center, given a joint design of the DMs that yields a Bhattacharyya
coefficient b, as [8]

PE ≤ √
π0π1b, (1)

where π = (π0, π1) denotes the set of a-prior probabilities. This
further motivates the use of the Bhattacharyya coefficient as a design
measure.

It should however be noted that while Blackwell’s theorem as-
serts the existence of a set of a-prior probabilities for which the de-
sign with minimal Bhattacharyya coefficient is also optimal with re-
spect to the probability of error, it does not state that the design is
optimal with respect to the probability of error for a given set of a-
prior probabilities: The Bhattacharyya coefficient, and the design, is
independent of the a-prior probabilities. It is further known that (1)
is in general a rather loose bound on the probability of error [9], and
minimizing the Bhattacharyya coefficient is therefore a rather blunt
tool for optimizing the error probability.

The main contribution of our work is to show that – contrary
to previous claims – it is in fact possible to within the algorithmic
framework proposed in [4] minimize the probability of error directly.
Furthermore, by proper implementation, the complexity of doing so
is not significantly larger than the design based on the Bhattacharyya
coefficient; the complexity is of the same order. To obtain our solu-
tion, we propose to combine the fine-grained observation-binning
already used in [4] together with a method for updating the condi-
tional probability mass functions (PMFs) of the joint index space.
Using the proposed method, the complexity does not increase con-
siderably in comparison to the algorithm already proposed in [4],
while the receiver operating characteristic (ROC) of the system is
much improved.

The outline of this paper is as follows. In Section 2 the sys-
tem model is defined and the algorithm of Longo et al. is briefly
described. Section 3 presents the proposed design method and the
merits of the proposed design are shown by numerical examples in
Section 4. Section 5 concludes the paper.

2. PRELIMINARIES

As in [4], we consider a decentralized binary hypothesis testing sys-
tem with N peripheral nodes in a parallel network topology as shown
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Fig. 1. Decentralized hypothesis testing scheme in a parallel net-
work.

in Fig. 1. The peripheral nodes, or decision makers (DMs), observe
the same phenomenon and send their observations to the fusion cen-
ter through rate-constrained channels. The DMs are (scalar) quantiz-
ers that map their observations yn ∈ R, n = 1, · · · , N , to an output
value (message) un from a discrete set Mn using the decision func-
tion γn : R → Mn, i.e., un = γn(yn), n = 1, · · · , N . DM n then
sends its message un to the fusion center through a channel of rate
Rn bits and the cardinality of the discrete set Mn must therefore
satisfy 0 < ‖Mn‖ ≤ 2Rn .

The observations are in general considered to be correlated with
conditional distributions p(y1, y2, · · · , yN |Hj), where Hj , j =
0, 1, are the two possible hypotheses. The rate-constrained chan-
nels are one-way links from the DMs to the fusion center and there
is no communication between the DMs. The fusion center makes
the global decision u0 ∈ {H0, H1} based on the joint index vec-
tor uN � (u1, u2, · · · , uN ) ∈ MN using the fusion function

γ0 : MN → {H0, H1}, where MN � M1 ×M2 × · · · ×MN .
Longo et al. [4] argued that a cooperative design can outper-

form a non-cooperative design even if the DMs act independently on
their received data. Using the Bhattacharyya coefficient as a design
criterion and the person-by-person optimization methodology they
proposed a cyclic design algorithm.

In each cycle of the algorithm, the DMs – one by one from DM
1 to DM N – are individually updated (optimized) while keeping
the other DMs fixed. After the optimization of each DM the PMF of
the joint index space is updated, and at the end of the cycle a new
Bhattacharyya coefficient is calculated. If the improvement in the
Bhattacharyya coefficient is greater than a threshold, the algorithm
performs another cycle; otherwise the last set of decision functions
is the final design.

The Bhattacharyya coefficient is defined as

b =
∑

uN∈MN

√
P0(uN )P1(uN ), (2)

where Pj(u
N ) � P (u1, · · · , uN |Hj), j = 0, 1, are the conditional

PMFs. The updating rule for the N th1 DM used in [4] is given by
(cf. [4, Eq. (13)])

γ+
N (yN ) = argmin

uN

∑
uN−1∈MN−1

f0(u
N−1, yN )L1/2(uN )

+f1(u
N−1, yN )L−1/2(uN ),

(3)

1The updating rule for the nth DM is analogous, but focussing on the N th
DM parallels the exposition in [4] and simplifies notation.

where MN−1 � M1 × M2 × · · · × MN−1, and where the op-
timization is over all possible indices uN ∈ MN for every input
value yN ∈ R of the N th DM. In (3), L is the likelihood ratio de-
fined as L(uN ) � P1(u

N )/P0(u
N ), and the functions f0 and f1

are auxiliary functions defined as

fj(u
N−1, yN )

�
∫
γ−1
1 (u1)

· · ·
∫
γ−1
N−1

(uN−1)

p(yN |Hj)dy1 · · · dyN−1,
(4)

where γ−1
n (un) is the quantizer partitions for un, i.e., the set of yns

that satisfies γn(yn) = un.

The practical implementation of Longo et al.’s method must
store a representation of the quantizer partitions γ−1

n and the func-
tion fj . Since it is impossible to store an exact representation of
an arbitrary partition or an arbitrary function in computer memory,
Longo et al. suggested in the examples section of [4] the idea of di-
viding a portion of the observation space of DM n, i.e., R, containing
most of the probability mass into the equally sized fine-grained bins,
and required fj to be constant across each bin. The optimization
problem in (3) was then (approximately) solved bin-by-bin: The as-
signed index to each bin was chosen to satisfy (3), with yN chosen as
the midpoint of the bin. In short, the algorithm finally implemented
in [4] can be viewed as an algorithm that assigns an index from MN

to each bin. The same index assignment problem is solved by the
algorithm proposed herein, albeit with the (Bayesian) probability of
error metric in place of the Bhattacharyya coefficient.

3. PROPOSED METHOD

In the Bayesian formulation of the decentralized hypothesis testing
problem, the expected error probability when using the maximum
a-posteriori (MAP) criterion at the fusion center is [10]

PE = 1−
∑

uN∈MN

max
j=0,1

{
P (Hj |uN )P (uN )

}

= 1−
∑

uN∈MN

max
j=0,1

{
Pj(u

N )πj

}
,

(5)

where, again, Pj(u
N ) � P (uN |Hj), and where πj � P (Hj) is

the a-prior probability of hypothesis Hj , j = 0, 1. It can further be
shown that the conditional PMFs that appear in (5) can be expressed
in terms of the auxiliary functions fj(u

N−1, yN ), defined in (4), and
the decision function γN of the N th DM as

Pj(u
N ) =

∫
γ−1
N

(uN )

fj(u
N−1, yN )dyN . (6)

Using the fine-grained binning idea, the observation space of
DM n is divided into Kn equally sized (small) bins

Cn
k � (cnk , d

n
k ], 1 ≤ k ≤ Kn, 1 ≤ n ≤ N, (7)

and an index is assigned to the observations in each bin, i.e.,

γn(yn) = vnk ∈ Mn, if yn ∈ Cn
k . (8)

With a slight abuse of notation we write (8) in an abbreviated form
as γn(Cn

k ) = vnk . Each DM is then designed in a bin-by-bin man-
ner where an index is assigned to a bin while the other bins are kept
fixed. The index assigned to a bin is chosen to minimize the prob-
ability of error given in (5). In other words, focusing again on the
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N th DM for notational simplicity, the optimization formulation for
the kth bin of the N th DM CN

k is given as (cf. (5))

γ+
N (CN

k ) = arg max
vN
k

∈MN

∑
uN∈MN

max
j=0,1

{
Pj(u

N )πj

}
, (9)

where the index assignment vNk influences the PMFs Pj(u
N )

through the full decision function γN according to (6). The op-
timizer of (9) is found over all possible indices vNk ∈ MN , in turn
for every bin CN

k , 1 ≤ k ≤ KN and then for every DM n where
1 ≤ n ≤ N .

As seen by (9), in order to update the index assignments of a bin,
the set of all conditional PMFs for every possible joint index vector
need to be computed. This has a complexity order of O(‖MN‖)
and the potential to make the algorithm difficult to implement for
larger rates and number of DMs. That said, the complexity of the
proposed design procedure based on (9) is not significantly higher
than the design procedure proposed in [4] and based on (3).

To see this, assume that we want to update the index of CN
k

(which is defined by (7) for n = N ). Assume also that the index
of CN

k before updating is α ∈ MN and the corresponding condi-
tional PMFs are Pj(u

N ), j = 0, 1. Then γN (CN
k ) = α and the

conditional PMFs where uN = α are

Pj(u
N−1, α) =

∑
i∈IN (α)

∫
CN
i

fj(u
N−1, yN )dyN (10)

=
∑

i∈IN (α)
i �=k

∫
CN
i

fj(u
N−1, yN )dyN +

∫
CN
k

fj(u
N−1, yN )dyN ,

where IN (α) is the set of bins of DM N with index α ∈ MN

(including bin k).
Assume that the index of the kth bin CN

k changes to α+ �= α as
a result of (9). Then this bin does not belong to IN (α) anymore and
the new conditional PMFs P+(uN−1, α|Hj) for which uN = α are

P+
j (uN−1, α) =

∑
i∈IN (α)

i �=k

∫
CN
i

fj(u
N−1, yN )dyN

= Pj(u
N−1, α)−Δj(u

N−1, CN
k )

(11)

where we define Δj(u
N−1, CN

k ) in terms of the auxiliary function
fj(u

N−1, yN ) in (4) and (6) as

Δj(u
N−1, CN

k ) �
∫
CN
k

fj(u
N−1, yN )dyN . (12)

The new PMFs where uN = α+ are

P+
j (uN−1, α+) = Pj(u

N−1, α+) + Δj(u
N−1, CN

k ), (13)

while all other PMFs remain fixed, i.e.,

P+
j (uN−1, uN �= α, α+) = Pj(u

N−1, uN �= α, α+) . (14)

Thus, only a subset of the conditional probabilities need to be up-
dated for each change of the bin index vnk .

From the above, it can be seen that for the index assignment of
each bin, the changes in PMFs corresponding to (11) and (13) should
be found which requires calculating the function Δj(u

N−1, CN
k ) for

all joint index vectors uN−1 ∈ MN−1. This is essentially the same
computations required in the updating rule of [4] in the sense that fj
must be evaluated for all different joint index vectors uN−1 in order
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Fig. 2. ROC curves for different values of the a-prior probabilities
for the example in Section 4. Squares correspond to the points which
give minimum error probability in each case.

to evaluate (3). There is a small discrepancy in that Δj(u
N−1, CN

k )
involves the integral of fj over CN

k , but given that fj in (4) is already
defined in terms of a high dimensional integral, the added complexity
of evaluating (12) is minor. In a practical implementation of either
approach, we believe that the most reasonable general strategy is to
choose the bins so small that the functions involved varies slowly
over the bins, and to approximate (4) and (12) using only the mid-
point of the integration interval; in which case the complexity is of
the same order. For the (Gaussian) examples studied in Section 4, the
involved quantities can also be obtained in closed form using differ-
ences of Q-functions and the complexities per evaluation are also
then of the same order. In the end, evaluating (or approximating) the
required quantities for all uN−1 has a complexity of O(‖MN−1‖),
and solving either (3) or (9) by searching over MN yields an overall
complexity of O(‖MN‖).

In closing, we should stress that both Longo et al.’s method [4]
and the proposed method (which use person-by-person optimization)
only lead to locally optimal solutions and the results depend on the
initialization of DMs. A straightforward way to further improve
upon the method of [4] is to initialize the method proposed herein
with the solution obtained as prescribed in [4].

4. EXAMPLES

In this section we illustrate the benefit of the proposed approach over
that of [4] by numerical examples. Like in [4] a decentralized hy-
pothesis testing problem with two peripheral nodes (N = 2) is con-
sidered. The observation model is as

H0 : y = n

H1 : y = a+ n,

where a is a constant known signal and n is a zero mean Gaussian
vector of covariance matrix

Σ =

(
σ2 rσ2

rσ2 σ2

)

where r (|r| < 1) is the spatial correlation coefficient. As in [4], we
assume that the

• signals have equal energy |a1|2 = |a2|2 = E with a1 = −a2,

• per channel signal-to-noise ratio (E/σ2) is −5 dB,

• spatial correlation coefficient is r = 0.9, and

• channel rates are the same, i.e., Rn = R for n = 1, 2.
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Fig. 3. The complete ROC curve achievable by tuning the a-prior
probabilities of the proposed design. The design of [4], which is
independent of the a-prior probabilities, and the optimal centralized
design are included for comparison.

The interval [−4,+4] (containing 0.9997 of the total probability
mass for each DM) is divided into 256 bins, and the DMs are de-
signed for various values of a-prior probabilities and channel rates
(in bits/sample).

Although the proposed design is based on the (Bayesian) error
probability, the close relation between the error probability and the
ROC makes it possible to compare the results of proposed method
with those of [4] in terms of the ROC curve as well. The error prob-
ability is given by

PE = π0P (u0 = H1|H0) + π1P (u0 = H0|H1)

= π0PF + π1(1− PD),
(15)

where PF and PD are the probability of false alarm and the proba-
bility of detection, respectively [11]. The relation in (15) allows us
to trace out an ensemble of designs for different PFs and PDs by
tuning the a-prior probabilities π.

Once the peripheral nodes are designed2, the ROC curve [11]
of the system can be found (as is shown in Fig. 2 for different val-
ues of a-prior probabilities). The fusion function γ0 is allowed to be
stochastic and is for each method chosen optimally for each PF. The
(deterministic) MAP fusion rule that achieves the minimum error
probability PE,min for the proposed design is shown by a square in
Fig. 2, and the corresponding pair (P ∗

F , P
∗
D) [cf. (15)] is a Pareto op-

timal point on the ROC curve [11]. For the proposed design method,
there is a unique design of the DMs (corresponding to a unique ROC
curve) for every set of a-prior probabilities. However, in the method
proposed by Longo et al. there is only one design; it is independent
of any a-prior probabilities. This gives the proposed design method-
ology a distinct advantage.

Fig. 2 depicts the resulting ROC curves for the proposed design
for rate R = 2 channels and for different values of a-prior probabil-
ities along with corresponding (P ∗

F , P
∗
D) pairs for each design. The

resulting curve from Longo et al.’s method (coinciding with that of
[4]) and the optimum achievable ROC curve for a centralized hy-
pothesis test (corresponding to R = ∞) are shown for comparison.
The envelope of achievable ROC curves resulting from our proposed
design can be found from the resulting (P ∗

F , P
∗
D) pairs obtained for

2For rate R = 1 we initialize the DMs in all methods with the optimal
local (threshold) decision rules, and for rate R > 1 we uniformly quantize
the two decision regions of the R = 1 initialization.

Table 1. Comparison between the minimum error probability of the
method from [4] and the proposed method.

R = 1 R = 2
π0 PB

E,min PB
E,ub P ∗

E,min PB
E,min PB

E,ub P ∗
E,min

0.3 0.237 0.390 0.220 0.168 0.309 0.135
0.4 0.313 0.417 0.249 0.217 0.331 0.145
0.5 0.389 0.426 0.311 0.251 0.338 0.148
0.6 0.313 0.417 0.249 0.205 0.331 0.145
0.7 0.237 0.390 0.220 0.160 0.309 0.133

many different a-priors. Fig. 3 illustrates the achievable ROC curves
of the proposed method, along with Longo et al.’s method in ad-
dition to the optimum centralized performance. It can be observed
that the design of [4] achieves the minimum probability of error and
the same performance as the proposed design at two points on the
ROC curve, as predicted by Blackwell’s theorem, but for many other
operational points the proposed design significantly outperforms the
design of [4] and is at rate R = 2 already quite close to the optimal
centralized performance.

The minimum error probability resulting from [4] and the pro-
posed method are shown in Table 1 for various values of a-prior
probabilities and channel rates. In the table, PB

E,min is the mini-

mum error probability resulting from Longo et al.’s method, PB
E,ub

is the corresponding upper bound of the error probability resulting
from (1), and P ∗

E,min is the minimum error probability of the pro-
posed method. The results in Table 1 show that for rates R = 1
and R = 2, there is a significant gain in performance achieved by
the proposed method, and increasing the rate improves performance.
Comparing the resulting error probabilities to the upper bound in (1)
confirms that the Bhattacharyya coefficient provide a rather loose
bound, and optimizing the probability error directly is therefore well
justified.

5. CONCLUSION

As in [4], we have considered a distributed detection scenario with
binary hypotheses, distributed sensors or local decision makers, and
rate constrained channels from the DMs to the fusion center. By
explicitly using the Bayesian measure of probability of error in place
of the dissimilarity measure, i.e., the Bhattacharyya distance, used in
[4], we have obtained a design that not only with similar complexity
outperforms the prior design in terms of the probability of error in the
Bayesian setting, but which also yields superior ROC characteristics:
For a given probability of false alarm PF, we achieve a significant
improvement in the probability of detection PD over that obtained
by the approach of [4]. The key to the performance improvement of
the proposed design lies in the parameterization of the design offered
by tuning the asserted prior probabilities.
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