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ABSTRACT

In one of his landmark papers, Cover established the fun-
damental scaling laws of learning with nearest-neighbor
rules [1]. With the recent advances on distributed nearest-
neighbor learning in sensor networks novel trade-offs arise,
involving the faithfulness of message representation (quanti-
zation bits) and the number of delivered messages (transmit-
ting sensors). This is the main theme of this paper.

1. DISTRIBUTED LEARNING MODEL

One of the earliest and most famous results of Nearest-
Neighbor (NN) learning is Cover’s half-information result,
well summarized by the statement: “...it can be said that

at least half the information in the infinite training set is

contained in the nearest neighbor” [1]. With reference to
estimation problems with a Mean-Square-Error (MSE) cri-
terion, this can be compactly expressed by the following
ratio:

mmse

mse1
=

1

2
, (1)

where mmse denotes the minimum MSE that can be achieved
with perfect knowledge of the underlying data distributions,
and mse1 is the limiting (as the training-set size goes to in-
finity) MSE achieved using the nearest-neighbor rule.

In the same paper [1], the result is generalized to the case
of k-NN rules, and the pertinent MSE-ratio becomes:

mmse

msek
=

1

1 +
1

k

, (2)

showing how the limiting learning accuracy scales with the
number of neighbors k.

The above results refer to a centralized setup, where the
training set needed to build the NN regression function is en-
tirely available to the inference performer, which has to esti-
mate a response variable Y0 based upon a sensed observation
X0. In many networked systems, however, there is an increas-
ing demand for distributed inference schemes, such that it
makes sense to ask whether and how these fundamental laws
apply in decentralized contexts.

This kind of questions gave rise to the emerging paradigm
of distributed learning [2–7]: here the training set is dissem-
inated through a network of agents communicating quantized
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versions of their labels to a Fusion Center (FC), which then
produces the final estimate. Within the distributed learning
framework, a decentralized version of the classical nearest-
neighbor regression rule has been proposed [5], where only
the k sensors owning the k training data closest to the ob-
servation X0 (the k nearest neighbors)1 communicate their
information to the fusion center, exploiting an ad-hoc access
policy based upon an ordered transmission protocol [8]. In
this paper, we refer to this distributed NN strategy and, fol-
lowing [5], we start by showing that the MSE for a quantized
k-NN rule obeys, in the limit of large training set sizes:

mmse

mse
(q)
k

=
1

1 +
1

k

(

1 +
Db

mmse

) , (3)

where mse
(q)
k is the limiting (large training set) MSE achieved

with the k-NN quantized strategy, and Db is the squared dis-
tortion of the NN labels due to a b-bits quantization. The
above formula highlights that a trade-off exists between the
number of neighbors k and the number of quantization bits b.
This aspect is clearly seen when one must put a constraint
in terms of storage/communication budget. The kind of con-
straint we consider here is the overall quantizers’ rate R of
the k transmitting sensors, that is, of the k nearest neighbors
employed for the final estimation, yielding:

R = k · b. (4)

The main focus of this paper is in maximizing the MSE-ratio
in (3), subject to a constraint on the allowed expense R in (4),
which amounts to answering the following question: Is it bet-

ter to finely quantize few neighbors, or to roughly represent

many of them? (Or is the answer more often a compromise?)

2. RELATED WORK AND MAIN CONTRIBUTIONS

Distribution-free (universal, nonparametric) statistical learn-
ing [9,10] has a long history in many branches of engineering
and applied science. This notwithstanding, the problem of
decentralized statistical learning is definitely a less mature re-
search field. The problem has been systematically addressed
in [2–4], where the authors show for the first time that uni-
versally consistent regression is possible, even in a distributed

1We wish to avoid confusion here. Hereafter, the terminology “nearest-
neighbors” does not refer to any geographic/topologic attribute. It refers to
closeness of the training data to the current measurement X0.
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sensor network, with reference to a decentralized implemen-
tation of the naive kernel estimator. Then, the result has been
extended to the case of decentralized NN rules [5–7], using
an access policy that relies upon the idea of ordered transmis-
sions, originally proposed in [8]. Both the decentralized naive
kernel and the decentralized NN make strong use of the ran-
domized quantizers proposed in [11, 12], which are suited to
universal and decentralized inference problems.

The present work stems from some computer-based ex-
perimental evidences found in [5], where it is observed that,
in comparing the 1-NN strategy with infinite precision (num-
ber of bits b ! 1), to the k-NN rule with one-bit quantized
data, an interesting trade-off arises, in terms of quantizers’
precision and active neighbors. Here we propose to exploit
this trade-off, with reference to: i) a distributed k-NN rule;
ii) randomized quantizers with resolution b; iii) a constraint
on the overall quantization rate R = k · b; and iv) an increas-
ingly large training-set size.

3. DISTRIBUTED LEARNING MODEL

The statistical learning problem we are faced with can be for-
malized as follows. We want to estimate a response variable
Y0 ∈ R, based on the sensed data X0 ∈ Rd, when the joint
statistical distribution of the pair (X0, Y0) is unknown [9].
With reference to a supervised learning model, we assume
the availability of a training set Tn = {(Xi, Yi)}ni=1, that is a
collection of independent, identically distributed (i.i.d.) real-
izations of (X0, Y0). An estimator of Y0 is then represented
by: rn : Rd −→ R, where the regression function rn(x0) =
rn(x0, Tn) depends on x0 and on the training set Tn. It is
standard to omit the explicit dependence of rn upon the train-
ing set for notational simplicity. As a performance proxy, we
adopt the MSE, namely, the quantity E{[rn(X0)− Y0]2}. By
application of the orthogonality principle, one has:

E{[rn(X0)− Y0]
2}

= mmse + E{[rn(X0)− r∗(X0)]
2}, (5)

where r∗(x0) = E{Y0|X0 = x0} is the optimal estimator,
also referred to as the (optimal) regression function.

A popular choice for the regression function is that
based on the k-NN rule, and we here focus on that. Let
{(

X(i,n)(x0), Y(i,n)(x0)
)}n

i=1
be the sequence of pairs or-

dered according to

‖X(1,n)(x0)− x0‖ ≤ · · · ≤ ‖X(n,n)(x0)− x0‖,

where ‖ · ‖ denotes the standard Euclidean norm in Rd. We
rule out ties by assuming continuous random variables2. The
k-NN regression function we are interested in is accordingly

1

k

k
∑

i=1

Y(i,n)(x0) =
n
∑

i=1

Wni(x0)Yi, (6)

where the latter representation is convenient for later use, and
is written in terms of the weights:

Wni(x0) =

{

1/k, if Xi is one of the k-NN of x0,
0, otherwise.

(7)

2Even when this is not the case, the observation space can be artificially
enlarged by including a random continuous component, as detailed in [9].

Note that the weights are functions of x0 and of the observa-
tion variables in the training set {Xi}ni=1.

As anticipated, in this paper we deal with a distributed

version of the above problem. Adhering to the standard model
proposed in [2–4], we consider a training set disseminated
through a network of n sensors that is deployed for estimation
purposes: without loss of generality, assume that each sensor
reads a single example (Xi, Yi) from Tn. At a certain time,
the observation variableX0 is made available to the FC, and is
broadcast to all nodes. By exploiting the locally available ex-
amples, sensors deliver messages to the FC, which produces
the final estimate.

In order to implement the NN rule in a decentralized way,
sensors transmit their labels with transmitting delays chosen
as a function of the observed distances ‖Xi −X0‖, thus en-
abling the FC to read the labels already ordered according
to the desired NN criterion. This access policy is based on
the well-assessed strategy of ordered transmissions, proposed
in [8], and then applied to different inference problems, see,
e.g., [13, 14]. Recently, it has been tailored to decentralized
NN rules in [5–7]. The specific details on the implementa-
tions of this access protocol can be found in the aforemen-
tioned works, and are here omitted for space limitations. For
the subsequent discussion, it suffices to assume that the FC
is able to receive the labels Y(i,n)(x0), namely, those corre-
sponding to the k nearest neighbors to x0.

3.1. Randomized quantizers for universal estimation

The last sentence of the above section is deliberately wrong.
Indeed, we would like to stress that, in our decentralized prob-
lem, one must be faced with some data quantization. And in-
deed, what we can say is that the FC recovers some quantized

version of the labels, say Qb(Y(i,n)(x0)), where Qb(y) is a
b-bits quantizer of the input y.

The main difficulty here is that the distribution of Y is
unknown. To overcome this issue, we resort to the universal

randomized quantization rule proposed in [11, 12]. In order
to quantize a value y to b bits, we proceed as follows. As-
sume from now on that Y is a bounded random variable, with
|Y | ≤ V . First, divide the range [−V, V ] into intervals of
length ∆ = 2V/(2b − 1), yielding the thresholds −V + i∆,
with i = 0, 1, . . . , 2b − 1. Then, find the interval where y
lies, and denote by τ(y) the corresponding lower threshold.
Finally, round y to one of the endpoints by a biased coin
flip. Thus, for a given y, the quantizer output is a binary ran-
dom variable taking values τ(y) and τ(y) + ∆. As shown

in [11,12], setting pb(y) = P{Qb(y) = τ(y)+∆} = y−τ(y)
∆ ,

makes the quantizers unbiased, i.e., E{Qb(y)} = y, where
the expectation operator acts w.r.t. to the quantizers’ random-
ness only, since y is here fixed. Similarly:

VAR{Qb(y)} =
(2V )2

(2b − 1)2
pb(y) [1− pb(y)]. (8)

3.2. MSE computation with quantized labels

The unquantized k-NN regression function in (6) can be mod-
ified in order to take into account the quantization of the la-
bels Yi, yielding the following regression function that can be
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computed at the FC:

rn(x0) =
n
∑

i=1

Wni(x0)Qb(Yi). (9)

It is useful to remark that i) in addition to the training set,
rn(x0) contains a further source of randomness, due to the
adoption of probabilistic quantizers; and that ii) this fact does
not impair the orthogonality principle (5), such that it suffices
to focus on the regression error E{[rn(X0)− r∗(X0)]2}.

By defining Qi = Qb(Yi), it is expedient to reinterpret
the last term in (5) as the k-NN regression function for esti-
mating a fictitious parameter Q0 = Qb(Y0), based upon the
observation X0 and the modified training set {Xi, Qi}ni=1.
The optimal regression function for this problem is

E{Q0|X0 = x0} = E{Y0|X0 = x0} = r∗(x0), (10)

which is nothing but the optimal regression function corre-
sponding to the original (X,Y ) learning problem. The above
follows from the fact that, given Y0 and X0, the residual ran-
domness is in the quantizers’ output, which are unbiased in
this conditional space. From Problem 6.4 in [9] it then fol-
lows that:

E{[rn(X0)− r∗(X0)]
2}

n→∞
−→

E{[r∗(X0)−Q0]2}

k
. (11)

Invoking again the conditional unbiasedness of the quantizers,
the last quantity can be written as:

1

k




E{[r∗(X0)− Y0]

2}
︸ ︷︷ ︸

mmse

+E{[Q0 − Y0]
2}

︸ ︷︷ ︸

Db




 . (12)

Using now (11) and (12) into (5), the limiting MSE with quan-
tized data is:

mse
(q)
k = mmse +

1

k
(mmse +Db) ,

which corresponds to the MSE-ratio in (3). Furthermore, by
application of (8), the quantization distortion Db can be writ-
ten as:

Db =
(2V )2

(2b − 1)2
E{pb(Y )[1− pb(Y )]}. (13)

The adopted universal setup prevents us from a precise eval-
uation of Db, since this quantity depends3 on the unknown
distribution of Y via the term E{pb(Y )[1− pb(Y )]}. For this

reason we next focus on the worst-case bound Db ≤ V 2

(2b−1)2 ,

holding because p(1 − p) ≤ 1/4 for p ∈ [0, 1]. This yields
the lower bound for the MSE-ratio:

mmse

mse
(q)
k

≥
1

1 +
1

k
+

1

k

(2b − 1)−2

mmse

= J (mmse, b, k),

(14)
where mmse = mmse/V 2 is the scaled mmse. It is worth
noting that the lower bound J depends on the unknown
(X,Y )-distribution only through the scaled mmse, which
will be a key property to be exploited in the next section.

3Note that the distortion depends only on the marginal (prior) distribution
of the parameter Y , not on the statistical relationship between X and Y .

4. OPTIMIZATION PROBLEM

Let us introduce the set D(R) = {b, k ∈ N : b · k ≤ R}. We
are interested in maximizing the MSE-ratio (lower bound),
for a given available budget R. We start by formulating the
problem when the mmse is known. The optimized ratio is
formally given by:

J ∗(mmse, R) = max
(b,k)∈D(R)

J (mmse, b, k). (15)

Since, however, the actual mmse depends upon the under-
lying distribution and is therefore generally unknown, we re-
sort to the following max-min approach. Observe first that
mmse ≤ 1, since mmse ≤ E{Y 2} because 0 is a legitimate
estimator, and Y 2 ≤ V 2 by our boundedness assumption.
Then, in a sense, the ratio mmse quantifies a relative accu-
racy with respect to the range of the estimated variable. In
practical problems, it is reasonable to restrict the analysis to
a class where this scaled error cannot be lower than a given
value, call it ε. Accordingly, we formulate the max-min prob-
lem:

max
(b,k)∈D(R)

min
mmse≥ε

J (mmse, b, k) = J ∗(ε, R), (16)

where the last equality easily follows from the monotonicity
property of J (mmse, b, k) with respect to mmse.

4.1. Approximate closed-form solution

Equation (16) reveals that it is useful to understand the main
properties of the optimized lower bound J ∗(ε, R), as a func-
tion of ε. Accordingly, we now study in more detail the opti-
mization problem in (15). This is amenable to a direct nu-
merical solution, and we shall pursue this approach in the
next section. Before doing that, we would like to provide
some approximations that turn out to be useful from a theo-
retical standpoint. A closer look to (14) reveals that: i) for
small values of mmse, the quantizer resolution is expected
to be increased, and ii) due to the exponential dependence
of the quantization error upon b, for values of R that are not
too small, the optimal unconstrained value of b is seldom ex-
pected to exceed the available R. As a result, we propose to
replace b with a continuous counterpart β, and to solve the
unconstrained, continuous optimization problem

β∗(mmse) =
1

R
argmin

β∈R

β

(

1 +
(2β − 1)−2

mmse

)

︸ ︷︷ ︸

f(β)

, (17)

having used k ≈ R/β, and considering only the non-
constant terms at the denominator of J in (14). The optimal
β∗(mmse) solves f ′(β) = 0, where:

f ′(β) = 1+
1

mmse

[

(2β − 1)−2 − (2β ln 2) 2β(2β − 1)−3
]

.

This task has to be performed numerically, as we show in the
next section. In addition, we would like to give a closed-form
approximation, holding in the high resolution regime, where
we can write:

f ′(β) ≈ 1 +
1

mmse
2−2β [1− 2β ln 2] .
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Fig. 1. Optimal number of bits, as a function of mmse = mmse/V 2, for
cases a)− d) as described in the main text. The black-filled point represents
the optimal number of bits solving (16), with ε = 0.1.

Setting w = 1− 2β ln 2, and equating to zero, we have

w ew = −e · mmse ⇒ w = W−1(−e · mmse),

yielding:

β∗(mmse) ≈
1−W−1(−e · mmse)

2 ln 2
, (18)

where W−1(x), with x ∈ (−1/e, 0), denotes the lower4

branch of the Lambert function. Note that the condition
x ∈ (−1/e, 0) implies that the above approximation can be
used provided that, at least, mmse < 1/e2.

5. RESULTS AND SUMMARY

Let us now construct some illustrative examples aimed at test-
ing the presented results. Without loss of generality, we work
with V = 1. Let U(a1, a2) be a random variable uniform in
the interval [a1, a2], and let5

X = U(−1/2, 1/2), Y = r∗(X) + E , (19)

with optimal regression function r∗(x) = a/(1+a) sin(2πx).
For the range mmse < 1/3, we use the error model

E =
U(−1, 1)

1 + a
⇔ mmse = E{E2} =

1

3

1

(1 + a)2
, (20)

such that, when a ranges from ∞ to 0, mmse ranges from 0
to 1/3. To explore the complementary interval (1/3, 1), we
consider the alternative model, for a ∈ (0, 1):

E = B
U(−1,−1 + a)

1 + a
+ (1− B)

U(1− a, 1)

1 + a
, (21)

where B is an equiprobable binary random variable. It can be

shown that mmse = 1−a+a2/3
(1+a)2 , which allows spanning the

range ( 1
12 , 1). We set the constraint to R = 25. In Fig. 1

4The lower branch corresponds to w ≤ −1, which is of interest here
because we are working in the high resolution regime, and w = 1− 2β ln 2.

5Note that a regression problem can be always written as Y = r∗(X) +
E , where E = Y − r∗(X), and E{E2} = mmse.
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Fig. 2. MSE-ratios, as a function of the scaled minimum error mmse =
mmse/V 2, for cases a) − f) as described in the main text. The dashed
vertical line corresponds to the worst-case error ε = 0.1 used in solving (16).

we show the optimized number of bits computed with dif-
ferent methodologies, namely: a) maximization of the lower
bound in (15); b) continuous unconstrained optimization (17);
c) the limiting approximation based upon the Lambert func-
tion (18); and d) maximization of the actual MSE-ratio for the
introduced model, evaluated by 105 Monte Carlo runs. With
reference to a), we see that the general trend is as follows:
for small values of mmse, the optimal recipe goes in the di-
rection of using finely quantized observations, for instance,
with mmse = 10−2 in the figure we get b∗ = k∗ = 5. As
mmse increases, we go in the opposite direction, reaching,
for mmse = 1, the situation b∗ = 1, k∗ = R = 25, yielding
J ∗ = (1+ 2/R)−1. The approximations of this solution, see
b) and c), seem to be satisfying, in that b) is a good smoothed
version of the actual, staircase function corresponding to a),
and c) tends to b) as mmse decreases. Finally, the curve in
d), pertaining to the specific models described by (19), (20)
and (21), exhibits the same kind of behavior, while, of course,
the actual values are not equal (and they must not be), since
we have optimized a bound. The corresponding situation is
terms of MSE-ratio is displayed in Fig. 2, where it is seen
that the actual performance is effectively lower bounded by
the theoretical J ∗, and that the overall behavior is even more
faithful, due to the fact that the discretization issues are ex-
pected to be less pronounced when embedded in the overall
MSE performance.

The above considerations refer to the behavior of the var-
ious optimized MSE-ratios as function of the actual mmse,
which is a preliminary step to address the worst-case anal-
ysis in (16), which is addressed by curves e) and f), with
reference to ε = 0.1. Specifically, e) shows the bound
J (mmse, b, k), when b and k are chosen so as to optimize
the worst-case as in (16); and f) displays the actual MSE-
ratio for the considered data model, for the same values of b
and k. As it must be, the considered design is conservative,
in the sense that the MSE-ratios, in the region mmse > ε,
are lower than the ones optimized with knowledge of the true
mmse, while, in the point mmse = ε (i.e., the worst case in
the considered region), the MSE-ratio is in fact maximized.
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