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ABSTRACT

Measurement faults in control systems may result in perma-

nent damages to the system components. Therefore, sensor

validation is essential before the measurements are used for

any system reconfiguration. In this paper, a statistical ap-

proach for sensor fault identification is proposed. Specifically,

the potential sensor fault is assumed to be an additive bias

term in the measurement model. The problem of fault iden-

tification is formulated as a least-squares optimization prob-

lem with an ℓ1 penalty on the bias term. An algorithm is

further introduced to determine the regularization parameter

automatically. Experimental results show that the proposed

method can accurately detect multiple sensor failures from

noisy measurements.

Index Terms - sensor validation, bias detection, analytical

redundancy, ℓ1 regularization selection

1. INTRODUCTION

Measurements in critical systems such as nuclear power

plants [1] and aircrafts [2] should be acquired accurately,

especially when the information is used for feedback. Sensor

validation and its practical application in real-life systems

has been investigated over the last three decades. The idea

of sensor validation is to detect the sensor failure in the

system based on multiple (possibly redundant) sensor mea-

surements and the constraint relations (CRs) between them.

Those two options are referred to as the hardware redundancy

and analytical redundancy respectively. Obviously, installing

multiple redundant sensors is helpful to identify and mitigate

sensor faults, however, it increases the costs of the system.

Sensor validation is often performed locally for the sake

of simplicity. Majority voting method and threshold check

method are the most popular methods. Majority voting [3]

employs sufficient hardware redundancy (more than 2 sen-

sors) to validate a set of sensors. Although this method has

the virtue that the validation results will not be affected by

the uncertainties in the system, hardware redundancy of sen-

sors may be costly in terms of space and weight budget. On

the other hand, the threshold method validates sensors in a

system by means of the nominal values, cf. [4]. However,

many problems can arise from the choice of the threshold,

such as false alarms caused by the system dynamic behav-

ior. To solve this problem, a dynamic threshold method is

proposed in [5, 6] using polynomial chaos observer, yet the

sensor faults are not completely isolated from other physical

faults in the system. Alternatively, soft computing methods

such as fuzzy methods have also been applied to generate the

dynamic threshold [1, 7, 8, 9, 10]. The resulting sensor val-

ues are selected based on the confidence level of each redun-

dant sensor and their fuzzy membership parameters during the

process of data fusion and threshold generation [9]. Unfor-

tunately, the fuzzy algorithms are generally computationally

expensive and the physical meaning of the parameter tuning is

not obvious. Principle component analysis (PCA) is also em-

ployed to detect sensor faults [12]. A reduced order predic-

tion is retrieved based on the correlation of the measurements.

However, the method is only applicable under the assumption

that the correlation between the faulty and the normal sen-

sors is smaller than that between the normal sensors, which

is incorrect in the case of constant sensor bias. Another ap-

proach is presented in [2] and [11], where the sensor relations

are captured by a Bayesian network. The posteriori probabil-

ity of the failure of a single sensor is then obtained through

belief propagation, incorporating the measurements from the

other sensors as well as commands to verify the selected sen-

sor. Since the latter sensors may also be corrupted, the results

obtained in this manner may not be accurate. Consequently, it

is often necessary to consider fault diagnosis on a global sys-

tem level instead of locally, and consider all sensors and CRs

simultaneously. Along these lines, in [4] the CRs in a boiler

thermal power plant are considered together, in order to vali-

date all the sensors in the system without discrimination. The

validity level of a sensor reflects the number of consistent CRs

that are involved. However, the method involves complicated

structural analysis and hypothesis testing. Another drawback

is that parameter tuning by experts is required.

To take full advantage of the CRs in a system and to pro-

vide compatibility for different system structures, we formu-

late the problem of sensor fault detection as a least-squares

optimization problem with an ℓ1 penalty for the sensor bias.

CRs associated with hardware or analytical redundancy are

imposed as constraints on the ℓ1 regularized least-squares op-

timization problem. A similar problem formulation is also

adopted in [13]. However, the regularization parameter is

fixed regardless of different failure scenarios and noise levels.

Our experiments indicate that fixed regularization parameter
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will lead to biased estimates of faulty sensors. Instead, we

propose to determine the regularization parameter automati-

cally from the data based on a bootstrap approach [15]. With

proper selection of the regularization parameter, the proposed

method yields accurate sensor fault identification and also in-

fers the sensor bias.

The paper is organized as follows. In Section 2, we

present the proposed ℓ1 regularized least-squares optimiza-

tion method for sensor fault detection. In Section 3 we

explain how the regularization parameter can be selected in

an automated manner. In Section 4 we consider two case

studies, involving hardware and analytical redundancy. In

Section 5 we offer concluding remarks.

2. ℓ1 REGULARIZATION

In this section, we first introduce the least-squares optimiza-

tion with ℓ1 regularization, and subsequently, discuss its ap-

plication to the sensor validation problem.

We denote by c ∈ R
N and b ∈ R

N the true state vector

and bias vector respectively. We define the sensor measure-

ment model as:

yi = ci + bi + εi, (1)

where ci is the true value for the ith sensor, yi is the cor-

responding reading, bi is the sensor fault or bias, i ∈
{1, 2, . . . , N} denotes the sensor index, and N is the total

number of sensors. The measurement noise εi is assumed

to be Gaussian white noise with zero mean and variance σ2.

Note that both ci and bi are unknown.

Naively, one may try to infer b and c by solving the fol-

lowing least-squares problem:

(b̂, ĉ) = min
b,c

‖y − b − c‖2, (2)

where y is the measurement vector. Clearly this problem is

ill-posed, as the bias b and the true sensor value c cannot be

distinguished in (2).

To address this issue, we make the reasonable assumption

that only a small fraction of the sensors are biased. Equiva-

lently, the bias vector b is assumed to be sparse. Such prior

knowledge can be integrated into the problem by introduc-

ing an ℓ1 regularization term into the objective function (1).

Commonly ℓ1 regularization is applied in signal processing

and statistics to induce sparsity. Furthermore, as mentioned

in Section 1, constraint relations (CRs) Ac = 0 can also be

leveraged to generate better estimates of the true sensor values

and the sensor biases. Taken together, the regularized least-

squares optimization problem can be written as:

(b̂, ĉ) = min
b,c

‖y − b − c‖2 + k‖b‖1 s.t. Ac = 0. (3)

Note that the matrix A in Eq. (3) is constructed with the pa-

rameters of the CRs. For example, let the state vector c be

the voltage and the current [V, I] across a resistor R. Then

A = [1,−R] according to Ohm’s Law.

To reduce the number of unknowns in Eq. (3), an equiva-

lent unconstrained problem can be formulated as:

(b̂, â) = min
b,a

‖y − b − Za‖2 + k‖b‖1, (4)

where Z contains basis vectors of the null space of A. The di-

mension of the vector a is Nullity(A). Although the ℓ1 penalty

makes the estimates b̂ and ĉ different from the true bias and

states, the estimates of the zero pattern of b is unbiased and

consistent with the ground truth. The proposed method can

therefore identify the faulty sensors reliably.

We can extend (4) to include L samples of measurements

yℓ (ℓ = 1, 2, . . . , L):

(b̂, â) = min
b,a

1

L

L∑

ℓ=1

‖yℓ − b − Za‖2 + k‖b‖1. (5)

The optimization problem (5) can be solved by the projected

scaled sub-gradient (gafni-bertsekas variant) solver [16].

Note that the regularization parameter k governs the trade-off

between satisfying the CRs with the sensor readings and min-

imizing the number of biased sensors. By properly selecting

k, we can correctly detect the biased sensors, which will be

discussed in the next section.

3. REGULARIZATION PARAMETER

Our proposed method for error identification in sensors con-

sists of the following steps:

1. Check whether there is inconsistency in the measurement

vector with CRs. If ‖A(m)y‖1 < ‖A(m)‖1bth for each

row m in matrix A, then the CR consistency is satisfied.

bth here represents the bias threshold vector. An empirical

choice for bias threshold of each sensor is 3σ, where σ is

the sensor noise variance.

2. When inconsistency exists, the BINCO method [15] is ap-

plied for regularization selection. To obtain sufficient dis-

turbance with a small sample size, bootstrap resampling

is adopted, i.e. L samples of measurement vectors are re-

sampled with replacement to form M data sets, and each

set includes L measurement vectors. For each of the M
data sets and each k value in the given range, the opti-

mization procedure in Eq. (5) is repeated to obtain the es-

timated bias and states. Specifically, the BINCO method

is proceeded as follows:

(a) The selection frequency for each sensor can be ob-

tained as xi = Bi/M , where Bi is the number of

times bi > 0. The resulting x generates an empirical

probability density function fk. A typical selection of

regularization parameter k will result in a U-shaped fk

[15] as shown in Fig. 1.

(b) fk can be decomposed into the “normal” portion and

the “bias” portion fk = (1 − π)fk
0
+ πfk

1
, where π

is the ratio of biased sensors existing in the real sys-

tem. fk
0

is the density function of the normal sensors

and fk
1

is the density function of the biased ones. The

minimum density point Vmin is determined in the fit-

ted curve of fk in Fig. 1. The functional form of the

“normal” portion f̃k
0
(x|ρ) can be estimated by fitting

fk(x), x ∈ (0, Vmin] into a binomial distribution with

a Beta prior on ρ as in [15].
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Fig. 1: Empirical density function of xi.

(c) Extend f̃k
0

to the region x ∈ [Vmin, 1). For a given

threshold of selection frequency γ ∈ (0, 1), FDR is

defined as
∑

x≥γ f̃
k
0
(x)/

∑
x≥γ f

k(x).

(d) Choose the minimum γ∗ such that FDR(γ∗, k) < α,

where α is a predefined threshold.

(e) The number of truly biased sensors is estimated as

Ns(k) = (1− FDR(γ∗, k))
∑

x≥γ∗ fk(x).

3. Choose kopt that gives the maximum Nbias. Then the cor-

responding bias threshold is determined as

Topt = min(bi|∀i : xi > γ∗).

4. Learn the sensor bias using constraint relations with

healthy measurement for the detected faulty sensors.

4. RESULTS AND DISCUSSION

In this section, we assess the performance of the proposed

method for two cases: hardware redundancy and analytical

redundancy. We also investigate the stability of the proposed

method when the nullity of A is small.

4.1. Hardware redundancy

Here we consider the scenario where 100 (redundant) sen-

sors measure the same quantity c (thus N=100). Such sit-

uation is often referred to as “hardware redundancy”. We

generate L samples yℓ (1). A certain fraction of the sensors

are selected at random to be biased. Their bias b is random

uniformly distributed within the range (0, 10). The sensor

noise variance σ2 is set to 1 in this experiment. The BINCO

method [15] is employed to determine the regularization pa-

rameter in the range [0.1, 1], and the FDR threshold α is set

to 10−10. The mean square error (MSE) for estimating b is

depicted in Fig. 2 for different sample size L.

As can be seen from Fig. 2, the MSE decreases as we

increase the sample size L. Moreover, the MSE remains small

even for a significant fraction of biased sensors (e.g., 30%).

Next, we apply the proposed method for sensor validation

and fault isolation in three cases with different noise levels

(σ2 = 0.01, 0.1, 1). L = 10 for each case. In the case σ2 =
1, we also show the results when L = 100 for comparison.

We average over 100 trials and compute the correct detection

rate (CDR) as a function of biased sensor ratio. In Fig. 3,

CDR ≥ 80% is achieved with a proper choice of L when less

than 50% of the sensors are biased, regardless of the noise

level in the channel. Moreover, by comparing the results of

L = 10 and L = 100, we observe that increasing the sample
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Fig. 2: MSE of the proposed method for estimating c for vary-

ing number L of samples.
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Fig. 3: Correct detection rate (CDR) of the proposed method

for three different noise levels.

size helps improve the estimation accuracy when the sensor

readings are very noisy (i.e., σ2 = 1).

4.2. Analytical redundancy

We now consider a static electric network, specifically, a re-

sistive network. Suppose that the voltages and the currents at

all resistors are measured by sensors. The relation between

the P CRs and the N sensors is summarized in Table 1 [17].

Table 1: CRs for resistive network.

Topology N P No. of Resistors NR

Serial NR + 2 NR NR ≥ 2
Parallel NR + 3 NR + 1 NR ≥ 2
△ 9 6 3

From Table 1, we can conclude that Nullity(A) = 2 for

static electric networks with only parallel and series config-

urations, and Nullity(A) = 3 for the △-configuration. We

construct a simple parallel circuit, depicted in Fig. 4, to val-

idate the proposed method. In this circuit, Rp and Rs repre-

sent the load and the wire loss respectively. The circuit can be

adjusted to arbitrary scale by a specified odd number NR of

resistors. The CRs for the state variables c are derived from

the Kirchhoff’s laws. Other parameters related to the follow-

ing simulations in this subsection are listed in Table 2.

We first investigate how the noise variance (σ2 = 0.01, 1)

affects the identification of the biases. We randomly select

sensors to be biased and set the bias value within the given

range |b|max. The mean square error (MSE) between the es-

timated and true states averaged over 200 trials is shown in

Fig. 5. In each trial, k is specified by the BINCO method

with FDR threshold α = 10−10. Fig. 5 shows that the MSE

is typically very small if less than 50% of the sensors are bi-
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Table 2: Circuit example: simulation parameters.

NR N L Rp Rs |b|max
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Fig. 4: Circuit example.

ased. We can also see that smaller noise variance yields more

accurate estimates. Additionally, the MSE increases with the

number of biased sensors for larger percentages (above 45%)

of biased sensors, as expected.

Next, we consider the effect of the penalty parameter k
on the estimates. Fig. 6 shows the CDR as a function of the

biased sensor ratio, including the results of several fixed k
values and of the BINCO method. For the BINCO method,

the FDR threshold is α = 10−10. The noise variance σ2 = 1
in this experiment. Let us first focus on the scenario when k
is fixed. When a small k is used, the estimated b̂ vector is

dense. Consequently, the CDR is low due to the false nega-

tives. On the other hand, a large k results in a b̂ that is more

sparse than the true one, thus some biased sensors cannot be

detected. In contrast, the BINCO method allows us to infer

the optimum pair of kopt and Topt from the measurement vec-

tor y in an automated manner. As a result, the CDR resulting

from the BINCO method is always higher than that resulting

from all the choices of fixed k, as shown in Fig. 6. We further

test the performance of the BINCO method for different val-

ues of the bias. We consider three random instances. In each

case, the same bias b is assigned to 10 sensors selected at ran-

dom in the circuit. We then change the value of b sequentially.

The results averaged over 10 trials are summarized in Fig. 7.

Obviously, the results generated by the BINCO method are

robust to the location of the faulty sensors. Furthermore, we

can find that the CDR is quite high (above 90%) when the

bias value is larger than 0.1, and it grows with the given bias
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Fig. 5: MSE of state estimation.
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Fig. 6: Correct Detection Rate for fixed k.

value, since large bias values make it easier to differentiate

faults from noise. Interestingly, the values of kopt determined

by the BINCO method are in a small range, i.e., [0.2, 0.7],
for different given bias values. By contrast, the threshold Topt

changes for different values of bias (see Fig. 8) substantially,

implying that the BINCO method can automatically tune the

parameters kopt and Topt in different cases.
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Fig. 7: Correct Detection Rate for different b.
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Fig. 8: Threshold Topt for different b.

In summary, the BINCO method performs well at high

noise level, yielding favorable CDRs; it also enables us to

perform sensor bias identification without needing to tune pa-

rameters, which is beneficial in practical applications.

5. CONCLUSIONS

We proposed a novel method for sensor validation using least

square optimization combined with ℓ1 regularization. The nu-

merical results show that with automated tuning of the regu-

larization parameter k, the sensor bias errors can be success-

fully identified, and the bias values can be accurately esti-

mated. In future work, we will extend our approach to dy-

namical systems.
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[14] Meinshausen, N. and P. Bühlmann, “Stability selection,”

Journal of the Royal Statistical Society, Series B (Statis-

tical Methodology), vol. 72, no. 4, pp. 417–473, 2010.

[15] S. Li, L. Hsu, J. Peng and P. Wang, “Bootstrap In-

ference for Network Construction,” Annals of Applied

Statistics,vol. 7, no. 1, pp. 391–417, 2011.

[16] Mark Schmidt, 2006 03/04/2012]; Available from:

http://www.di.ens.fr/ mschmidt/Software/L1General.html

[17] J. B. Dennis. “Mathematical Programming and

Electrical Networks,” The Technology Press

of The Massachusetts Institute of Technol-

ogy, Cambridge, Mass., 1959; Available from:

http://hdl.handle.net/1721.1/13366

7668


