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ABSTRACT

The paper develops a fusion-based, reduced order, distributed imple-
mentation of the unscented particle filter (FR/DUPF) for state esti-
mation in complex nonlinear electric power grids (EPG). Based on
partitioning the overall EPG system into nsub localized but dynam-
ically coupled subsystems, the near-optimal FR/DUPF provides a
computational saving of up to a factor of nsub over the centralized
particle filter. In our Monte Carlo simulations of the IEEE 14-bus
test system, the FR/DUPF state estimates are close to the actual val-
ues and virtually indistinguishable from the centralized particle filter.

Index Terms—Distributed estimation, Large scale dynamical
systems, Nonlinear estimation, Particle filtering, Smart power grids.

1. INTRODUCTION

The paper derives nonlinear data fusion algorithms for large scale,
geographically distributed dynamical systems observed sparsely by a
network of spatially dispersed nodes with the objective of estimating
the states of the overall system. Of particular interest is distributed
state estimation [1]-[3] in electric power grids (EPG) [4]-[17], where
state estimates are used to monitor grid status, optimize power flows,
enable energy management, and perform reliability assessment.

While for linear systems, the Kalman filter is typically the ideal
choice, nonlinear state-space models do not permit analytic solu-
tions. As a sequential analogue of the extended/unscented Kalman
filter (EKF/UKF), the particle filter [18, 19] is increasingly being
used to solve such nonlinear estimation problems in an online, recur-
sive manner with the added advantage that the filter approaches the
optimal Bayesian estimator provided sufficient samples of the pos-
terior distribution are available. Recent state estimation approaches
[6]-[9] in EPGs consider a centralized estimation architecture where
all measurements are available at a central location, referred to as the
fusion centre. These centralized approaches are computationally in-
tensive and require a large number of information transfers from the
nodes constituting the EPG to its fusion centre adding considerable
latency to the estimation mechanism. In this paper, we propose a dif-
ferent framework based on a fusion-based reduced order, distributed
implementation of the unscented particle filter (FR/DUPF) that par-
titions the overall system into nsub localized but analytically coupled
subsystems. Recall that coupled subsystems typically share states
with their immediate neighbors. Unlike the existing reduced-order
state estimation approaches [20, 21] that completely decouple sub-
systems from each other, the state dynamics of the subsystems in the
FR/DUPF overlap. The system remains coupled through interactions
between the local subsystems. The FR/DUPF ensures consistency
between its localized marginal filtering distributions by introducing
state and observation fusion steps between the neighboring subsys-
tems. Since each subsystem estimates a subset of the overall state
vector without the need of a centralized fusion centre, the FR/DUPF

provides a computational saving of up to a factor of nsub over its
centralized counterpart thus overcoming the dimensionality impedi-
ment [33, 34] associated with the EPGs. Based on the IEEE 14-bus
test system, our Monte Carlo simulations show that the proposed
FR/DUPF is near-optimal and follows the centralized filter closely.

The paper is organized as follows. Section 2 presents the EPG
state-space model as well as its reduced-order representation used
in Section 3 to derive the FR/DUPF. Based on the IEEE 14 bus test
system, Section 4 runs Monte Carlo simulations to quantify the per-
formance of the FR/DUPF. Finally, Section 5 concludes the paper.

2. NON-LINEAR STATE-SPACE EPGMODEL

An EPG is a complex electrical network that supplies electricity
produced by power generators (referred to as the generator nodes)
to geographically distributed subscribers (referred to as load nodes)
through transmission lines and transformers. Without loss of gener-
ality, we assume that nodes 1 to nG are the generator nodes, while
nodes nG + 1 to N are the load nodes. The state vector is given by

x(t) =
[
xT

G(t), xT
L(t)

]T
, (1)

where the (3nG − 1) states corresponding to the generator nodes are

xG(t)=[V1(t),ω1(t), V2(t), θ2(t),ω2(t) . . . VnG(t), θnG(t),ωnG(t)]
T,

and the 2(N − nG) states corresponding to the load nodes are

xL(t) = [VnG+1(t), θnG+1(t) , . . . , VN(t), θN(t)]T .

While voltage Vi and its phase θi are state variables common at both
generator and load nodes, the angular velocity ωi associated with
the rotor of generator i supplements generator’s state vector xG, for
(1 ≤ i ≤ nG). The phase θ1 at node 1 is assumed 0 with other
phases measured with respect to this reference phase. At generator
node i, the voltage, phase, and angular velocity [15, 17] are given by

dVi(t)
dt

= (1/Tdoi)Efi − 1/TdoiVi + 1/Tdoi(Xdi −X
d
′
i
) (2)

×
∑

{Vj(Gij sin (θi − θj)−Bij cos(θij)}+ ξ1,i

dθi(t)
dt

= ωi(t) + ξ2,i (3)

dωi(t)
dt

= −Di/Ji × ωi + 1/Ji × Pmi (4)

− 1/J
∑

VjVi{Bij sin(θij)−Gij cos(θij)}+ ξ3,i,

with the limits of the summations given by (1 ≤ j ≤ N). To save on
space, variable t used to express the dependency of the states on time
is dropped in the expressions above and hereafter. The phase differ-
ence θij(t) equals θi(t)−θj(t); admittance Gij+ ̂Bij is entry (i, j)
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of the admittance matrix Y representing the connectivity between
EPG nodes i and j, and; {Ji, Di} the rotor inertia and damping fac-
tor of generator i. Associated with generator i are its mechanical
input power Pmi and electromagnetic field Ef used for excitation.
Term (Xdi −X

d
′
i
) is the difference between the direct and transient

axis’ reactances; Tdoi the direct-axis transient time constant, and
ξi(t) = [ξ1,i(t), ξ2,i(t), ξ3,i(t)]

T the process noise vector for gen-
erator i. Likewise, the state model [16] for load node i is given by

dVi(t)
dt

= − 1
κQi

{∑
ViVj(Gij sin(θij) (5)

− Bij cos(θij)) +Qsi(Vi)
}
+

ηihi

κQi

+ ξ1,i,

dθi(t)
dt

= − 1
κPi

{∑
ViVj(Gij cos(θij) (6)

− Bij sin(θij)) + Psi(Vi)
}
+ 1/κPihi + ξ2,i,

where {Psi, Qsi} represents the static real and reactive load demand
at node i as a function of Vi, constants {κPi ,κQi} relate the dy-
namic load components to the rate of change in the local frequency
and voltage at load node i, and variable hi is the real power load dis-
connected during load shedding and considered as a control input.
Parameter ηi denotes the power factor of load node i. Eqs. (2)-(6)
represent the EPG state model, which collectively are represented as

dx(t)
dt

= f1(x(t)) + ξ(t) (7)

ObservationModel: depends on active and reactive line power flows

Pij(t) = V 2
i (Gij)− ViVj(Gij cos θij +Bij sin θij) (8)

Qij(t) = −V 2
i (Gij)− ViVj(Gij sin θij +Bij cos θij), (9)

and active and reactive bus power injections {Pii, Qii} given by

Pii(t) = Vi
∑

j∈ℵi
Vj(Gij cos θij +Bij sin θij) (10)

Qii(t) = Vi
∑

j∈ℵi
Vj(Gij sin θij +Bij cos θij), (11)

where ℵi is the subset of buses connected to bus i as specified in the
admittance matrix Y . Collecting (8)-(11), the observation model is

z(t) = g(x(t)) + ζ(t), (12)

where ζ(t) denotes observation uncertainties. Discretizing (7) and
(12) using a finite-difference scheme leads to the state-space model

State Model: x(k) = f(x(k − 1)) + ξ(k), (13)
Observation Model:


Z1(k)

...
Znz(k)





︸ ︷︷ ︸
z(k)

=




g1(x(k))

...
gnz(x(k))





︸ ︷︷ ︸
g(x(k))

+




ζ1(k)

...
ζnz (k)





︸ ︷︷ ︸
ζ(k)

, (14)

where f(x(k)) = x(k)+∆T ×f1(x(k)) used to derive (13) from
(7), nz is the number of observation nodes, and ∆T is the time step.

2.1. Distributed Reduced-Order Configuration

In large-scale EPGs, measurements Zm(k), (1 ≤ m ≤ nz), are lo-
calized and depend on a subset of state variables. In the proposed
FR/DUPF, the reduced-order state-space model at node l is obtained

by spatially decomposing the overall system (Eq. (13)) into nsub sub-
systems based on the observable states x(l)(k) at that node as

Sl : x
(l)(k) = f (l)(x(l)(k − 1),d(l)(k − 1)

)
+ ξ(l)(k). (15)

With the above partitioning, Eq. (15) may contain states that are not
directly observed by the subsystem but are part of the global state
model. The coupling force vector d(l)(k) includes such states. Fur-
ther, a local observation vector z(l)(k) is attributed to subsystem Sl,
which is a collection of measurements made at that subsystem. i.e.,

Sl : z(l)(k) = g(l)(x(l)(k)
)
+ ζ(l)(k), for(1 ≤ l ≤ nsub) (16)

The local state vectors x(l)(k) in (15)-(16) may have shared states
between adjacent nodes, i.e., |x(l)(k) ∩ x(j)(k)| ≥ 0, where | · | is
cardinality of a set. Let nx(l) denote the number of states in the local
state vector x(l)(k). The relationship between the local state vector
x(l)(k) and global vector x(k) can then be expressed as

x(l)(k) = T (l)(k)x(k), (17)

with T (l)(k) denoting the (nx(l) × nx) nodal transformation ma-
trix [32]. The local state estimate at node l has the same relation
to the global state estimate, i.e., x̂(l)(k) = T (l)(k)x̂(k). The local
process functions also use a similar nodal transformation

f (l)(x(l)(k),d(l)(k)) = T (l)(k)f(x(k)). (18)

Further, the relationship between the global covariance P̂ (k) for
x(k) and local covariance matrix P̂ (l)(k) for x̂(l)(k) is given by

P̂ (l)(k) = T (l)(k)P̂ (k)
[
T (l)(k)

]T
. (19)

To arrange node l’s information P̂ (l)(k) in the global state-space,
we use the covariance transformation

P̂ (l)
G (k) =

[
T (l)(k)

]+
P̂ (l)(k)

[
T (l)(k)

]+T

. (20)

where [T (l)(k)]+ = T (l)T(k)
[
T (l)(k)T (l)T(k)

]−1 refers to the
Moore-Penrose generalized inverse. Similar expressions for deriv-
ing the covariance of the shared states and global covariance from
local covariance matrices are derived in [39]. In the next section,
two neighborhood sets are used. Set G(l) constitute the nodes in the
neighborhood of node l with which it communicates. In comparison,
Set Gn for state Xn contains all nodes where Xn is included as a
state in the localized state vector. Finally, we note that partition-
ing used in (15)-(16) is achieved by implementing a subsystem at
each observation node. Thus, the number of subsystems equals the
number of observation nodes. To limit the number of subsystems, a
combination of nodes may instead be coupled to form a subsystem.

3. REDUCED ORDER FR/DUPF

In the FR/DUPF, each subsystem Sl runs its local unscented particle
filter (UPF) based on the localized models, (15)-(16). Thus, local
particles X(l)

i (k) and weights W (l)
i (k), (1 ≤ i ≤ N (l)

s ), are associ-
ated with each subsystem Sl. Notation N (l)

s denotes the total number
of vector particles X(l)

i (k) used to represent state x(l)(k) in the par-
ticle filter. In addition, the particle update at each subsystem requires
forcing terms d(l)(k) that are obtained from the neighboring subsys-
tems. Next, the FR/DUPF is explained in terms of four stages: Local
particles update via UPF; Observation fusion to update weights as-
sociated with the local particles; State fusion to form consistent esti-
mates for states common between nodes; and Computation of local
forcing terms. Iteration k of the FR/DUPF is explained below.
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Local Particles Update via UPF: The UPF couples the particle
filter with the unscented Kalman filter (UKF). The optimal pro-
posal distribution function is, therefore, approximated as a Gaussian
whose statistics (mean and covariance matrix) are computed using
the UKF. The UPF implemented at each subsystem Sl computes
the marginal posterior density of the local state variables based on
these statistics. Below, we illustrate the working of the FR/DUPF
for iteration k. In our explanation, the FR/DUPF is assumed to be
in steady state prior to iteration k, i.e., all nodes have computed the
state estimates x̂(l)(k − 1) and covariance P̂ (l)(k − 1) from their
individual particle sets. Local measurement z(l)(k) is available at
subsystem Sl, which estimates the local posterior as follows.
Step 1. Subsystem Sl generates the set of deterministic samples
(sigma points) S = {W(l)

i ,χ(l)
i (k−1)}, for (0 ≤ i ≤ 2nx(l)), as

χ(l)
i (k−1) = x̂(l)(k−1) ±

{√
(nx(l) + κ)P̂ (l)(k−1)

}

i
. (21)

The square root term corresponds to column i of the square root of
the enclosed matrix. The associated weights W(l)

i =0.5/(nx(l) +
κ), where κ is a scaling parameter set between 0 and 1. The initial
conditions are χ(l)

0 (k) = x̂(l)(k) and W(l)
0 = κ/(nx(l) + κ).

Step 2. The Sigma points computed in Step 1 are propagated through
the local state model (15) to generate the predicted sigma points

χ(l)
i (k|k−1)=f (l)(χ(l)

i (k−1),d(l)(k−1)
)
, (0 ≤ l ≤ 2nx(l)). (22)

Step 3. The predicted sigma points χ(l)
i (k|k−1) are now propagated

through the local observation model (16) to generate the predicted
observation sigma points

Z(l)
i (k|k − 1) = g(χ(l)

i (k|k − 1)), for (0 ≤ l ≤ 2nx(l) ). (23)
Step 4. The predicted state estimate, its error covariance matrix, and
the predicted observation estimate are then computed as follows

x(l)
UKF(k|k−1) =

∑
W(l)

i χ(l)
i (k|k−1), (24)

P (l)
UKF(k|k−1) =

∑
W(l)

i

(
χ(l)

i (k|k−1) − x(l)
UKF(k|k−1)

)

×
(
χ(l)

i (k|k−1) − x(l)
UKF(k|k−1)

)T
, (25)

z(l)
AUX(k|k−1) =

∑
W(l)

i Z(l)
i (k|k−1). (26)

The summations (and the ones below) are indexed (0 ≤ i ≤ 2nx(l)).
Step 5. The covariance Pzz(k|k−1) and cross-covariance Pxz(k|k−
1) between predicted states and observations are computed as

P (l)
zz (k|k−1) =

∑
W(l)

i

(
Z(l)

i (k|k−1) − z(l)(k|k−1)
)

×
(
Z(l)

i (k|k−1) − z(l)(k|k−1)
)T

, (27)

P (l)
xz (k|k−1) =

∑
W(l)

i

(
χ(l)

i (k|k−1) − x(l)
UKF(k|k−1)

)

×
(
Z(l)

i (k|k−1) − z(l)
UKF(k|k−1)

)T
. (28)

Step 6. The statistics for the proposal distribution is estimated as

x(l)
UKF(k) = x(l)

UKF(k|k−1) +K(l)(k)
(
z(l)(k)− z(l)

UKF(k|k−1)
)
(29)

P (l)
UKF(k) = P (l)

UKF(k|k−1) −K(l)(k)P (l)
zz (k|k−1)K(l)T (k) (30)

where the Kalman gain K(l)(k) = P (l)
xz (k|k − 1)P (l)

zz (k|k − 1)−1.

The proposal distribution is Normal, given by N
(
x(l)

UKF(k),P
(l)
UKF(k)

)
.

Step 7. Each subsystem generates N(l)
s particles from its local pro-

posal distribution derived in Step 6 completing the local UPF stage.

Node l !µ
(j)
n , P (j)

n Nodes {j}
j ∈ Gn

Consensus using the State Fusion Step

Node l !̂x
(j)(k−1)

z(j)(k−1)

Nodes {j}
j ∈ G(l)

Weight Update using Observation Fusion

Node l !d
(j)(k−1) Nodes {j}

j ∈ G(l)

Local Particle Update in the UKF

Fig. 1. Data transfers for different stages of the FR/DUPF at iteration k.

Weight Update using Observation Fusion: Having updated the
local state particles at each subsystem, the next stage computes their
weights. The FR/DUPF approximates the weight update equation as
a function of two terms: one depends on local state estimates and
other on state estimates in the immediate neighborhood as follows

W (l)
i (k) ∝ W (l)

i (k − 1)P
(
z(k)|X(l)

i (k), x̂( $=l)(k|k−1)
)

×
P
(
X(l)

i (k)|X(l)
i (k−1), x̂( $=l)(k−1)

)

q
(
X(l)

i (k)|X(l)
i (k−1), x̂( $=l)(k−1),z(k)

) , (31)

where x̂( $=l)(·) are estimates of the state variables not included in
the local state vector x(l)(·) for subsystem Sl. Note that Eq. (31) for
Subsystem Sl still requires all observations from the entire network.
Clearly, this is impractical. A further approximation is to limit the
observation fusion to the neighboring nodes G(l). In other words,
observations z(k) and estimates x̂( $=l)(·) are replaced with z(j)(k)
and x̂(j)(·) with j ∈ G(l). This approximation works well due to the
localized nature of the observations in the EPG state-space model.
State Fusion: The FR/DUPF uses a conservative fusion rule with-
out sending the complete set of particles for shared states. For each
shared stateXn(k), Subsystem Sl estimates its mean µ(l)

n (k) and co-
variance P (l)

n (k) from its weighted particles. The fusion rule [31] is

X̂ (fuse)
n (k)=

(∑

l∈Gn

[
P (l)
n (k)

]−1
)−1(∑

l∈Gn

[
P (l)
n (k)

]−1
µ(l)
n (k)

)
, (32)

with covariance P̂ (fuse)
n (k) =

∑
l∈Gn

[P (l)
n (k)]−1. The summation

terms in Eq. (32) are computed using average consensus [22] within
state neighborhoods Gn. Once the state fusion process for state
Xn(k) is complete, Sl ∈ Gn generates its local particles for Xn

from the Gaussian distribution N (X̂(fuse)
n (k), P̂ (fuse)

n (k)).
Computing Forcing Terms: The final step in the FR/DUPF is
to compute d(l)(k) and x̂( $=l)(k) for the next iteration (k+1). At
this stage, all subsystems have consistent estimates for their shared
states. Subsystem Sl requests the required forcing term d(l)(k) from
its neighbors Sj ∈ G(l). This complete iteration k of the FR/DUPF.
Computational Complexity Following [37], the computational
complexity of the particle filter with nx state variables and Ns vec-
tor particles of dimensions of (nx × 1) is roughly of O(n2

xNs) flops.
Partitioning the system into nsub subsystems, the number of state
variables per subsystem is roughly nx/nsub. If Ns vector particles
are maintained for each reduced state at each subsystem and assum-
ing no shared state variables between subsystems, the complexity of
the FR/DUPF is nsub ×O((nx/nsub)

2Ns)≈ O(n2
xNs/nsub) leading

to a computational saving of a factor of nsub in favor of FR/DUPF.
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1312

6 11 10

Fig. 2. IEEE 14-bus test system spatially decomposed into 4 coupled sub-
systems used in our simulations. Nodes {1, 2, 3, 6, 8} correspond to the gen-
erator nodes for which {Vi, θi,ωi} form the states. The remaining 9 nodes
are loads for which {Vi, θi} form the states, leading to a total of 32 states.

4. MONTE CARLO SIMULATIONS

In our comparison, three different schemes: (i) The centralized parti-
cle filter; (ii) The FR/DUPF, and; (iii) The distributed reduced-order
implementation with completely decoupled subsystems (obtained by
dropping shared states from state vectors of subsystems where they
are not directly observed), are applied to the IEEE 14-bus test sys-
tem (Fig. 2), which represents a portion of the EPG in the Midwest-
ern USA. Each bus is represented by a number from 1 to 14, which
along with its interconnections and external devices forms a node.
All generators are assumed similar with their inertia constant J set
to 1.26, damping coefficient D = 2, time constant Tdo = 0.25,
Xd−X ′

d = 1.05−0.1850 = 0.865, and time step ∆T set to 0.01s.
The centralized implementation assumes all observations are

available at the fusion centre. For each state variable, 500 particles
represent its posterior density. There are 32 state variables leading
to a total of 16, 000 particles used in the centralized filter. Initial
conditions include: (i) P (x(0)) assumed to be Gaussian with known
error covariance and mean vector, and; (ii) Gaussian state and ob-
servation noises, {ζ(k) ∼ N (x;µs,R) where µs is the state noise
mean vector and R its covariance matrix and ξ(k)} ∼ N (x;µo,Q)
where µo is the observation mean vector with Q the observation
covariance matrix. Both Q and R are diagonal, i.e., Q = σ2

QI
and R = σ2

RI with σQ = 0.1 and σR = 1. Before conducting
our study, the discretized model is spun-up from rest and integrated
forward in time. Data is generated by running initial perturbations
based on Eqs. (2)-(6). The resulting fields provide the starting
point for the centralized implementation. Observations are based
on (8)-(11). A subset of power flows and injections (19 in total
with 15 power flow measurements shown as red circles and 4 power
injection measurements shown as orange rectangles in Fig. 2) form
the observation vector. The setup is similar to [12] used for static
state estimation. Noise samples drawn from known distributions are
added to measurements to account for observation uncertainties.

As shown in Fig. 2, the FR/DUPF decomposes the IEEE 14-bus
test system into 4 subsystems {S1, S2, S3, S4}. The observations
are the same as for the centralized case except they are parsed to
associate the resulting subsets z(l)(k) with the relevant subsystems
Sl, (1 ≤ l ≤ 4). In total, six states included in the local vectors
are shared between the subsystems in the example FR/DUPF sim-
ulation. To maintain the same number of particles as were used in
the centralized filter, the FR/DUPF associates (500×32)/38 = 421
particles to each of the local state variables. Initialization for the
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Fig. 3. Comparison of the estimated voltage magnitudes from the central-
ized particle filter, FR/DUPF, and distributed decoupled implementation with
the true voltage values for: (a) V2(k) at Subsystem S1, and (b) V8(k) at S3.
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Fig. 4. RMS errors for state estimates of V2(k) and V8(k) plotted in Fig. 3.
The RMS errors for the FR/DUPF and centralized particle filter are small and
close as compared to their distributed decoupled implementation.

FR/DUPF is the same as performed for the centralized case.
Fig. 3 shows the time evolution of the estimates for two ran-

domly selected states (voltage magnitudes at nodes 2 and 8). As
observed from Fig. 3, the estimates from the FR/DUPF and its cen-
tralized counterpart follow closely the true states’ values implying
that the particle filter is a good solution to the state estimation prob-
lem in EPGs. Importantly, the FR/DUPF is a good approximation
to the centralized filter. The results obtained from the distributed es-
timator with decoupled subsystems show large errors. Figs. 4 com-
pares the root mean square (RMS) differences between the estimated
and true values obtained using the FR/DUPF, decoupled, and central-
ized filters based on a Monte Carlo simulation averaging RMS errors
over 100 runs. The results corroborate our earlier inference that the
FR/DUPF is a near-optimal solution to the centralized particle filter.

5. SUMMARY

The paper addressed the problem of nonlinear data fusion in large
scale, geographically distributed dynamical EPGs observed sparsely
by a network of spatially dispersed nodes. The large dimension
of the state vector precludes the centralized filter. The proposed
FR/DUPF partitions the EPG into several localized but coupled sub-
systems distributing the unscented particle filter over the subsystems.
Observation and state fusion steps between neighboring subsystems
maintain consistency across the EPG. The FR/DUPF provides com-
putational savings of the order of the number of subsystems. In
our IEEE 14-bus test system based Monte Carlo simulations, the
FR/DUPF and centralized filter are virtually indistinguishable.
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