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ABSTRACT

In this paper we consider a multi-pair two-way relaying network

with two types of relays, namely, smart multi-antenna amplify and

forward relays and dumb repeaters. The smart relays are able to per-

form adaptive linear precoding while the dumb repeaters are only

able to forward the received signals. Utilizing an interference neu-

tralization scheme, a closed-form transmit strategy can be computed

for our scenario. We derive necessary and sufficient conditions for

the feasibility of interference neutralization. This provides interest-

ing insights how to choose system parameters like the number of

antennas and the number of relays. When the SINR balancing prob-

lem is considered, simulation results show that the interference neu-

tralization solution provides a balance between the computational

complexity and the performance when compared to optimal transmit

strategies.

Index Terms— interference cancellation, wireless relays,

MIMO, mathematical programming

1. INTRODUCTION AND CONTRIBUTIONS

Relays can be deployed to extend the coverage of wireless networks.

Considering the complexity of signal processing at the relays, they

can be categorized into two types: smart relays and dumb repeaters.

The smart relays are able to gather channel state information and per-

form linear precoding while the dumb repeaters are only able to serve

as amplifiers. Since the repeaters are oblivious to the source and des-

tination nodes and the system is interference limited, it can only ben-

efit a little from the repeaters [1]. Therefore, additional smart relays

are suggested to be deployed to further improve the system perfor-

mance in [1]. Multi-pair relay networks with both types of relays are

in general difficult to handle due to the existence of different types

of interference [2], [3]. On the other hand, the interference neu-

tralization technique, which tunes the interfering signals such that

they neutralize each other at the destination node [4], is proven to

be a powerful tool to handle interference in a multi-pair one-way re-

laying (OWR) network with both smart relays and repeaters [2], in

deterministic channels [4, 5] and two-hop relay channels [6]. Nev-

ertheless, a multi-pair two-way relaying (TWR) network with both

types of relays has not been considered in the literature.

Thus, in this paper we study a multi-pair TWR network with

repeaters and multiple smart multi-antenna amplify and forward

(AF) relays, where the relay amplification matrices at each relay are

designed. We first apply the interference neutralization technique,

which nulls the interference in the network. Afterwards, we obtain

a system which consists of multiple independent point-to-point two-

way relaying subsystems, and thus the system design is simplified.

The necessary and sufficient condition for the feasibility of inter-

ference neutralization is characterized and a closed-form solution
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Fig. 1. Multi-pair two-way relaying with multiple amplify and for-

ward relays where each relay has MR antennas.

is obtained. When the SINR balancing problem is considered, we

propose an iterative algorithm which is based on the Dinkelbach

type II method [7]. The proposed method guarantees a superlin-

ear convergence speed to the optimal solution. When compared to

optimal transmit strategies, the interference neutralization solution

provides a balance between the computational complexity and the

performance.

2. SYSTEM MODEL

The scenario under investigation is shown in Fig. 1, where K pairs of

single-antenna user terminals (UTs) would like to communicate with

each other via the help of N smart relays and K dumb repeaters.

Each smart relay has MR antennas. We assume the channel is i.i.d.

frequency flat and quasi-static block fading. The channel vector from

the (2k − 1)-th UT to the n-th relay is denoted as f2k−1,n (n ∈
{1, · · · , N}) and the cascaded channel vector of the (2k−1)-th UT

to all the relays is f2k−1 = [fT
2k−1,1,f

T
2k−1,2, . . . ,f

T
2k−1,N ]T ∈

C
NMR . Meanwhile, the channel from the (2k)-th user to the n-

th relay is denoted as g2k,n and the cascaded channel vector of the

(2k)-th UT to all the relays is g2k = [gT
2k,1, g

T
2k,2, . . . , g

T
2k,N ]T ∈

C
NMR , for k ∈ {1, 2, · · · ,K}. The repeaters in the network do

not cooperate with each other and amplify only their received sig-

nals [2]. Therefore, the equivalent channel from the i-th UT to the

j-th UT via the network of repeaters is modeled as a single variable,

which is denoted as hi,j ({i, j} ∈ {1, · · · , 2K}). We assume that

the reciprocity holds for the smart relay channel as well as for the
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repeaters’ channel such that hi,j = hj,i. This is valid in an ideal

reciprocal time-division duplex (TDD) system. The signals passing

through the repeaters and the smart relays are assumed to arrive at

the destination at the same time (symbol-synchronous). The trans-

mission takes two time slots. In the first time slot, all the UTs trans-

mit to the relays and the repeaters. The signal received at the n-th

relay can be combined in a vector as

rn =

K∑

k=1

(f2k−1,ns2k−1 + g2k,ns2k) + nR,n ∈ C
MR (1)

where sm (m ∈ {1, 2, 3, . . . , 2K}) is i.i.d. with zero mean and

unit variance and nR,n represents the zero-mean circularly sym-

metric complex Gaussian (ZMCSCG) noise with covariance matrix

E{nR,nn
H
R,n} = σ2

RIMR
, ∀n. In the second time slot, the repeaters

simply amplify and forward the received signal while the n-th smart

relay transmits r̄n = Wnrn, where Wn ∈ C
MR×MR is the relay

amplification matrix and the relay transmit power constraint has to

be fulfilled such that

N∑

n=1

E{‖r̄n‖
2} ≤ PR,max, if a total sum relay

power constraint is considered as in [8]. Finally, the received signal

at the (2k − 1)-th user can be written as

y2k−1 =
(

h2k−1,2k + f
T
2k−1W̃g2k

)

s2k
︸ ︷︷ ︸

desired signal

+
(

h2k−1,2k−1 + f
T
2k−1W̃f2k−1

)

s2k−1

︸ ︷︷ ︸

self-interference

+
K∑

ℓ6=k
ℓ=1

(h2k−1,2ℓ−1 + f
T
2k−1W̃f2ℓ−1)s2ℓ−1

︸ ︷︷ ︸

inter-pair interference

+

K∑

ℓ6=k
ℓ=1

(h2k−1,2ℓ + f
T
2k−1W̃g2ℓ)s2ℓ

︸ ︷︷ ︸

inter-pair interference

+ f
T
2k−1W̃ n̄R + n2k−1

︸ ︷︷ ︸

effective noise

where W̃ ∈ C
NMR×NMR is defined as W̃ = blkdiag{Wn} and

blkdiag{·} stands for the block diagonal operation. The ZMCSCG

noise n2k−1 has variance σ2
U , ∀k. If the channel is known at the

receiver, the self-interference term can be subtracted and thus we get

ŷ2k−1 = y2k−1 −
(

h2k−1,2k−1 + f
T
2k−1W̃f2k−1

)

s2k−1.

Let vec{·} stand for the operation which stacks the columns of

a matrix into a vector and the unvecM×N{·} operator stand for the

inverse function of vec{·}. Let ⊗ denote the Kronecker product.

Using the fact that vec{ΓXζ} = (ζT ⊗ Γ)vec{X}, we can show

that

f
T
2k−1W̃g2k = h

T
2k−1,2kw̃ =

(

vec{G̃2k ⋄ F̃2k−1}
)T

w̃

where ⋄ denotes the Khatri-Rao product, which is defined as the

column-wise Kronecker product [9], and where w̃ is defined as

w̃ =
[
vec{W1}

T · · · vec{WN}T
]T

∈ C
NM2

R , (2)

where the matrices F̃2k−1 = unvecMR×N{f2k−1} and G̃2k =
unvecMR×N{g2k}. Moreover, we introduce an auxiliary variable

α ∈ C where |α|2 = 1. Utilizing the Charnes-Cooper transform

[10], we let η1/α = w̃ and w =
[
ηT
1 α

]T
∈ C

NM2

R
+1. Then

it is possible to derive the signal-to-noise-plus-interference ratio

(SINR) of the (2k − 1)-th UT as a function of w, yielding

γ2k−1 =
wHE

(g)
2k−1w

wHF
(g)
2k−1w

(3)

where E2k−1 = h̄∗
2k−1,2kh̄

T
2k−1,2k and

F2k−1 =
K∑

ℓ6=k
ℓ=1

h̄
∗
2k−1,2ℓ−1h̄

T
2k−1,2ℓ−1 + h̄

∗
2k−1,2ℓh̄

T
2k−1,2ℓ

+ blkdiag{σ2
RH̃

∗
2k−1H̃

T
2k−1, σ

2
U}

with h̄i,j =
[
hT

i,j hi,j

]T
and H̃2k−1 = blkdiag{IMR

⊗
f2k−1,n}, ∀n.

Similarly, the total transmit power constraint of the relays in the

network can be expressed as

N∑

n=1

E{‖r̄n‖
2} = w̃

H
C̃w̃ ≤ PR,max ⇔ wCw ≤ 0 (4)

where C = blkdiag{C̃,−PR,max}, C̃ = blkdiag
{

(F̄ ∗
n F̄

T
n +

Ḡ∗
nḠ

T
n + σ2

RIMR
) ⊗ IMR

}

, and where we have the following

identities F̄n =
[
f1,n · · · f2K−1,n

]
∈ C

MR×K and Ḡn =
[
g2,n · · · g2K,n

]
∈ C

MR×K .

For a UT with even index, e.g., γ2k, the SINR expression can be

obtained by replacing 2k and (2k − 1) by (2k − 1) and 2k, corre-

spondingly. Note that all the derivations and the proofs in Sections 3

and 4 are omitted due to space limitations.

3. FEASIBILITY OF INTERFERENCE NEUTRALIZATION

In this section we show how the relay forwarding strategy can

be chosen to neutralize all interference and which conditions are

necessary and sufficient to achieve this. To this end, the fol-

lowing equalities must be satisfied at the same time. For all

ℓ, k ∈ {1, · · · ,K}, ℓ 6= k,

h2k−1,2ℓ−1 + f
T
2k−1W̃f2ℓ−1 = 0 (5a)

h2k−1,2ℓ + f
T
2k−1W̃g2ℓ = 0 (5b)

h2k,2ℓ−1 + g
T
2kW̃f2ℓ−1 = 0 (5c)

h2k,2ℓ + g
T
2kW̃g2ℓ = 0. (5d)

Equation (5a) describes the interference from any odd-indexed UT to

another odd-indexed UT. Similarly, (5b), (5c), (5d) describe the in-

terference from any even-indexed UT to any odd-indexed UT, from

any odd-indexed UT to any even-indexed UT and from any even-

indexed UT to even-indexed UT, respectively. The feasibility con-

ditions in (5) can be quantified by four parameters: the number of

relay nodes N , the number of antennas at each relay node MR, the

number of UT pairs K, and the maximum available power at the re-

lay PR,max. The conditions are summarized in the following main

result:

Theorem 1. Assume that we have a two-way relay channel with 2K
UTs, N relay nodes each with MR antennas, and sufficient power
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PR,max at the relay. The interference neutralization requirements,

given in (5), can be satisfied if and only if both of the following cri-

teria are satisfied:

1. The total available number of antennas in the network should

satisfy

2K(K − 1) ≤
1

2
NMR(MR + 1). (6)

2. Given the interference neutralization solution as w(I), the

available relay power PR,max should satisfy

PR,max ≥ w
(I)H

C̃w
(I). (7)

Corollary 1. Assume that interference neutralization is feasible, i.e.,

inequalities (6) and (7) are satisfied. Let KM2

R

be a commutation

matrix as defined in [11]. Define the SVD of K̄ = IN ⊗ (IM2

R

−

KM2

R

) as K̄ = UΣ[Vs Vn]
H where Vn ∈ C

NM2

R
×(NM2

R
−r2)

spans the null space of K̄ and r2 is the rank of K̄. The interference

neutralization solution of w(I) is computed as

w
(I) = Vn((ĀVn)

+
b+ (INM2

R
−r2

− (ĀVn)
+
ĀVn)w̃n) (8)

where {·}+ denotes the Moore-Penrose pseudoinverse and the vec-

tor w(I) ∈ C
NM2

R
−r2 contains the degrees of freedom that can be

used for further system improvements. Define ī ∈ {1, · · ·K} and

j̄ ∈ {̄i+ 1, · · ·K}. The column-vector b is generated by

b = −
[
h2ī−1,2j̄−1 h2ī−1,2j̄ h2ī,2j̄−1 h2ī,2j̄

]T
, ∀ī, j̄

and the corresponding Ā is generated via

Ā =
[
h2ī−1,2j̄−1 h2ī−1,2j̄ h2ī,2j̄−1 h2ī,2j̄

]T
, ∀ī, j̄.

The interference neutralization solution modifies the original

system model. Nevertheless, one can easily prove that the SINR and

the power constraint can be written in the same form as (3) and (4),

correspondingly.

Remark 1. Antenna layout design is a relevant problem in getting

better network planning and resource management in a relay-assisted

wireless network. Given the total number of antennas in the network,

in one extreme it is possible to group all antennas in one “mega re-

lay” which is powerful and manages all network resources and traf-

fic. In the other extreme, one can distribute the antennas uniformly in

the geometric space, such as in sensor networks. Or, a compromise

between both schemes: bundles of antennas are distributed at vari-

ous locations in the network. Our feasibility study on interference

neutralization provides an interesting result on how the total number

of antennas in the network, which are used for interference manage-

ment / neutralization, can be decreased when clusters of relays can

be formed. For example, when single antenna relays cannot cooper-

ate with each other, condition (6) implies that we need 2K(K − 1)
relays (number of antennas) in total. However, if we allow 3 single-

antenna relays to form a cluster - a multi-antenna relay, according to

(6), the number of antennas required in the network decreases by a

factor of two: NMR = K(K − 1).

Remark 2. The interference neutralization solution obtained by (8)

is a closed-form solution if w̃n is chosen randomly but fulfils the to-

tal relay transmit power constraint. Moreover, since w̃n has a lower

dimension compared to w̃, the computational complexity of the cor-

responding optimization problem will be lower.

4. SINR BALANCING VIA DINKELBACH-TYPE METHOD

SINR balancing aims at maximizing the minimum SINR of the UTs

in the network subject to the transmit power constraint at the relay.

In the following we discuss the SINR balancing solution with and

without interference neutralization.

Since the two cases possess the same expressions for the SINR

and the power constraint, we take the general system model in Sec-

tion 2 as an example. Our optimization problem with a sum power

constraint is formulated as

max
w

min
m

γm

s.t. w
H
Cw ≤ 0

w
H
C1w = 1 (9)

where C1 = blkdiag{0NM2

R

, 1} and the second constraint comes

from the fact that |α|2 = 1.

Problem (9) is non-convex. Hence, it may not be solvable in

polynomial time. But its approximate solution can be obtained by

using the semidefinite relaxation (SDR) techniques in [12]. We in-

troduce a new variable X = wwH and rewrite problems (9) as

λopt = max
X

min
m

Tr{EmX}

Tr{FmX}

s.t. Tr{CX} ≤ 0

Tr{C1X} = 1 (10)

With an additional non-convex constraint rank{X} = 1, the newly

formulated problems (10) are equivalent to the original problem.

Therefore, if the optimal solution Xopt to problems (10) is a rank-1

matrix, it is also the optimal solution to the original problem (9).

Otherwise, rank-1 extraction/approximation techniques should be

applied [12]. Due to the minimum over m, our problem (10) con-

tains more than three constraints and thus a rank-one solution is not

guaranteed according to [13, Theorem 3.2 & Corollary 3.4]. Hence,

the randomization technique in [12], which is a rank-1 approxima-

tion technique, will be used to get an approximate solution after we

solve (10). In the following we will propose an algorithm to solve

(10), which is based on the Dinkelbach-type II (DT-II) algorithm.

We start from introducing a parametric programming formula-

tion for our problem. As the SDR technique will be eventually ap-

plied, we take a short-cut and start with (10). A parametric program-

ming formulation of (10) is given by

f(λ) = max
X

min
m

Tr{EmX} − λTr{FmX}

s.t. Tr{CX} ≤ 0

Tr{C1X} = 1 (11)

where parametric here implies that we consider the solution of this

optimization problem for varying values of λ. This formulation is

especially useful if f(λ) is a convex function with respect to X . Be-

cause it is easier to solve a convex problem (11) than a non-convex

problem (10). Problem (11) is equivalent to (10) if there exists λ
such that f(λ) = 0 [7]. Thus, this gives rise to finding the root of

the equation f(λ) = 0. One of the iterative methods derived under

this concept is the so called Dinkelbach algorithm, where the origi-

nal version refers to the case m = 1. When m > 1, the Dinkelbach

type II (DT-II) algorithm is suggested in [7]. One prerequisite for

finding the optimal solution using the Dinkelbach type algorithms is

that the objective value of the original problem, i.e., (9), needs to be

7656



Table 1. The DT-II algorithm for solving (10)

Input: initial value λ(1), a threshold value ǫ, C, C1,

Em, Fm, ∀m, and maximum number of iterations Nmax.

Output: an optimal solution X with arbitrary rank.

Main step:
1: for p = 1 to Nmax do

2: Obtain (X(p), t
(p)
1 ) by solving

max
X,t1

t1

s.t. Tr{CX} ≤ 0,

Tr{C1X} = 1 (12)

Tr{EmX} − λ(p)Tr{FmX}

Tr{FmX(p−1)}
≥ t1, ∀m.

3: calculate λ(p+1) using

λ(p+1) = min
m

Tr{EmX(p)}

Tr{FmX(p)}
.

4: if |t
(p)
1 | ≤ ǫ or |λ(p+1) − λ(p)| ≤ ǫ

then

5: return X(p)

6: end if

7: end for

finite. This is the case for our problem. The SINR expressions in

(3) are Rayleigh quotients, which are bounded between the smallest

and largest eigenvalue1. Thus, the objective value is finite and it is

possible to extend the DT-II algorithm for our problem. The pro-

posed iterative algorithm based on the DT-II method is summarized

in Table 1. Based on the results in [7], we can show the following

corollary on the convergence rate of the proposed DT-II algorithm:

Corollary 2 ([7]). The DT-II algorithm converges at least superlin-

early to the optimal solution of (10).

5. SIMULATION RESULTS

In this section, the performance of the SINR balancing problem with

and without interference neutralization are evaluated via Monte-

Carlo simulations. For this purpose, we consider a system with

K = 2 pairs of UTs. The simulated flat fading channels are spa-

tially uncorrelated Rayleigh fading channels. The total transmit

power at the relay PR,max is fixed to unity and the noise variance is

identical at all nodes, i.e., σ2
R = σ2

U = σ2
n. Thus, the SNR is de-

fined as 1/σ2
n. All the simulation results are obtained by averaging

over 1000 channel realizations. “DT-II” denotes the case without

interference neutralization and “DT-II INL” denotes the case with

interference neutralization.

Fig. 2 demonstrates the convergence speed for the proposed

DT-II algorithm with and without interference when N = 4 and

MR = 2. When interference neutralization is applied, the conver-

gence speed becomes much faster. Moreover, when interference

neutralization is not used, we observe from numerical simulations

that the obtained Xopt is almost always rank-one.

In Fig. 3 we compare the achievable minimum SINR of various

algorithms under two different system settings, i.e., N = 2, MR = 4
and N = 4, MR = 2. Other than the proposed algorithms “DT-II”

and “DT-II INL”, the following two algorithms have also been com-

pared. The first one is denoted as “Non-smart”, which refers to the

1The parameter λ is bounded between minm Pmin{F
−1
m Em} and

minm Pmax{F
−1
m Em}, where P{·} denotes the eigenvalue.
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Fig. 3. A comparison of the achievable minimum SINR with and

without interference neutralization.

scheme where smart relays are not deployed. The second one is de-

noted as “TDMA”. This scheme refers to an orthogonal resource ac-

cess where each pair of the UTs utilize the relays and repeaters in the

network in a time-division multiple access (TDMA) fashion. Thus,

for a fair comparison, peak power constraints are used in the simula-

tion and the simulation results obtained using the “TDMA” scheme

are additionally divided by K. Clearly, when there are no smart re-

lays in the network, the presence of interferences will significantly

affect the system performance. On the other hand, the orthogonal

resource access scheme “TDMA” has its benefits especially in the

low SNR regime. Among the two non-orthogonal resource access

schemes, the interference neutralization scheme “DT-II INL” pro-

vides a balance between the computational complexity and the per-

formance. Moreover, when the total number of antennas is limited in

a network, to have a better system performance, it is more reasonable

to have a few relays but many antennas at each relay.

6. CONCLUSION

Multi-pair TWR networks with both repeaters and smart relays

suffer from various types of interference. When the interference

neutralization condition (5) is satisfied, a closed-form solution can

be obtained to neutralize the interference in the network. When

SINR balancing is chosen as the system design criterion, we have

compared the proposed non-orthogonal resource access schemes

with or without interference neutralization to a TDMA scheme,

which can be seen as an orthogonal resource access scheme. Simu-

lation results show that the proposed non-orthogonal resource access

schemes have larger degrees of freedom, i.e., a better SINR slope,

than the TDMA scheme in the high SNR regime.
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