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ABSTRACT

In this paper, we consider designing the Filter-and-forward (FF) re-
lay beamforming in frequency-selective channels using a new ap-
proach. The proposed approach aims to minimize the output power
at the destination side while keeping the response to the desired sig-
nal at a constant level, and the problem is subject to both total and
individual relay transmit power constraints. It is shown that the pro-
posed beamforming design scheme is equivalent to the SINR maxi-
mization formulation, in terms of achieving the same output SINR.
Despite the equivalence in performance, the proposed approach re-
quires significantly lower computational load for solving the prob-
lem.

Index Terms— Relay beamforming, filter-and-forward, output
power minimization.

1. INTRODUCTION

Distributed relay beamforming [1–5], which is realized by the co-
operating of distributed single-antenna nodes in a relay network to
form a virtual multi-antenna communication system, has recently at-
tracted considerable interests since cooperative diversity gain can be
obtained from employing it.

Due to its simplicity, relay beamforming based on amplify-and-
forward (AF) relay scheme is most widely studied. However, the
AF scheme which aims at working on frequency-flat channels can-
not be directly adopted for frequency-selective channels. In order
to deal with frequency-selective channels, Chen et al. have pro-
posed a filter-and-forward (FF) relaying scheme for relay beamform-
ing [6, 7]. In this scheme, relay nodes process the received signals
with finite impulse response (FIR) filters and then re-transmit the
filtered signals towards the destination. Since FF distributed relay
beamforming functions as distributed channel equalization, Liang et
al. have introduced an additional decision feedback equalizer (DFE)
at the destination side [8, 9]. Following the FF relaying scheme,
a relay beamforming approach is proposed in [10] to address the
problem of efficiently selecting the decision delay at the destination,
which is shown to significantly affect the system performance.

In this paper, the FF relay beamforming design problem is con-
sidered based on a new approach of output power minimization.
Specifically, the proposed approach aims to minimize the output
power while keeping the response to the desired signal at a con-
stant level, subject to both total and individual relay transmit power
constraints. We also demonstrate that, in terms of output SINR per-
formance, the proposed approach is equivalent to the SINR maxi-
mization formulation of [6]. However, in spite of the equivalence
in SINR performance, the proposed approach requires significantly
lower computational loads for solving the problem.

1.1. Relation to Prior Work

In the existing literature dealing with the relay beamforming design
problems, the criterion of output SNR optimization [1–5], or output
SINR optimization (when interference is taken into account) [6–9] is
most widely used. Also in [10], the relay beamforming design prob-
lem is discussed based on maximizing the received SINR at the des-
tination subject to a distortionless constraint. However, the proposed
beamforming approach amounts to minimize the destination output
power, with introducing a controllable scalar amplifier. Hence the
response to the desired signal can be directly adjusted, thus further
facilitating the subsequent symbol decision process.

The SINR maximization scheme proposed in [6] leads to a
second-order cone programming (SOCP) along with a bisection
search. Although we show that the proposed approach renders the
same output SINR performance as the SINR maximization, our ap-
proach solves an SOCP which has a computational load comparable
to merely a single iteration of the bisection search employed by [6].
That is, we propose an alternative approach to achieve the optimal
SINR with significantly reduced computational complexity. In ad-
dition, we present an FF relay network signal model with different
definition, with is more straightforward and concise than that used
in [6, 7],

In some of the aforementioned literature on relay beamforming
designs [2, 5–7], criteria based on optimizing transmit power at the
source or relay side are also frequently used. By employing these
criteria, the major concern lies in the power control aspects, such
as the battery life of terminal equipments and interference control
in a multi-user environment. But our proposed approach minimizes
the output power at the destination side, and focuses on suppressing
interference and noise for each destination receiver.

2. SIGNAL MODEL

As depicted in Figure 1, in a frequency-selective wireless channel
environment, we consider a relay network with one source node,
one destination node and R relay nodes, and all nodes are each
equipped with a single antenna. We also assume that the source-
destination direct link does not exist, and the relay nodes work in a
time-division duplexing (TDD) mode. That is, a signal transmission
from the source to the destination consists of two phases. In the first
phase, the source broadcasts its signal to all relays, and in the second
phase, the signal received at each relay is filtered and re-transmitted
to the destination.

The impulse responses of the frequency-selective backward
channel and forward channel that are corresponding to the ith re-
lay are denoted by f i = [fi(0), · · · , fi(Lf − 1)]T and gi =
[gi(0), · · · , gi(Lg − 1)]T , respectively. As also assumed in [6–10],
all the instantaneous channel state information are perfectly known.
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Fig. 1. Network signal model.

Hence, the signal received at the ith relay is

ri(m) = s(m) ∗ fi(m) + ni(m), (1)

where s(m) is the source transmit signal with the power of PS =
E{|s(m)|2}, ni(m) denotes the additive white Gaussian noise
with power σ2

n = E{|ni(m)|2}, and ∗ denotes the convolu-
tion sum between sequences. The relay received signal ri(m)
is processed by the relay filter with impulse response of hi =
[hi(0), · · · , hi(Lh − 1)]T , and then it is forwarded to the destina-
tion. Thus the signal received at the destination is

y(m) =

R∑
i=1

ri(m) ∗ hi(m) ∗ gi(m) + v(m), (2)

where v(m) is the additive white Gaussian noise with power
σ2
v = E{|v(m)|2}. Furthermore, y(m) is amplified by a con-

trollable scalar α ∈ C, and the output signal is expressed as

z(m) = α · y(m)

= α · s(m) ∗ heqv(m) + α · npro(m) + α · v(m), (3)

where heqv(m) =
∑R

i=1 fi(m) ∗ hi(m) ∗ gi(m) denotes the im-
pulse response of the equivalent channel from the source to the input
of the destination, and npro(m) =

∑R
i=1 ni(m) ∗ hi(m) ∗ gi(m)

is the noise propagated from the relay nodes.
For better illustration and to facilitate the subsequent problem

formulation, we next rewrite the overall signal model (3) in matrix
form. To start with, by represent the result of the convolution fi(m)∗
gi(m) as a column vector bi = fi ∗ gi = [bi,1, · · · , bi,Lb ]

T , where
Lb = (Lf + Lg − 1). Then the equivalent channel heqv(m) can be
rewritten in matrix form as

heqv =

R∑
i=1

Θihi = Ψw∗, (4)

where Ψ = [Θ1, · · · ,ΘR], w = [hH
1 , · · · ,hH

R ]T , and

Θi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bi,1 0 0
... bi,1

. . .
...

bi,Lb

...
...

0 bi,Lb

. . . 0
... 0 bi,1
...

...
. . .

...
0 0 bi,Lb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

is a column-circulant matrix of dimension Lc × Lh, Lc = Lf +
Lg +Lh−2. On the other hand, the propagation noise npro(m) can
be expressed in matrix form as

npro(m) =

R∑
i=1

(Gihi)
Tni(m), (6)

where ni = [ni(m), ni(m− 1), · · · , ni(m− Lg − Lh + 2)]T ,
and Gi is an (Lg + Lh − 1) × Lh column-circulant matrix with
[gi(0), · · · , gi(Lg − 1),01×(Lh−1)]

T as the first column, which
has a similar structure to Θi defined in (5). Therefore, from (4) and
(6), we can rewrite the overall signal model (3) in matrix form as

z(m) = α ·wHΨT s(m)

+ α ·
R∑

i=1

(Gihi)
Tni(m) + α · v(m), (7)

where s(m) = [s(m), s(m− 1), · · · , s(m− Lc + 1)]T .
Moreover, the intersymbol interference (ISI) in z(m) can also

be represented. Suppose that at the time instance (m), we want to
estimate the transmitted symbol s(m−τ) from z(m), and τ denotes
the decision delay. By separating the (τ + 1)th column from the
matrix ΨT , we can further decompose (7) as:

z(m) = α ·wH �ψT
τ s(m− τ)︸ ︷︷ ︸

Desired signal

+α ·wHΨ
T
τ s̄τ (m)︸ ︷︷ ︸

ISI

+ α ·
R∑

i=1

(Gihi)
Tni(m) + α · v(m)

︸ ︷︷ ︸
Noise

, (8)

where �ψτ is the (τ + 1)th row of Ψ, and hence Ψτ is the sub-
matrix of Ψ with removing the (τ + 1)th row, and s̄τ (m) =
[s(m), · · · , s(m − τ + 1), s(m − τ − 1), · · · , s(m − Lc + 1)]T .
Therefore, the desired symbol s(m) is separated from the ISI intro-
duced by neighboring symbols.

3. FF BEAMFORMING USING OUTPUT POWER
MINIMIZATION

In this section, we discuss the proposed relay beamforming design
scheme of output power minimization, and its equivalence in perfor-
mance to the output SINR minimization scheme is also shown.

3.1. Problem Formulation

We consider an FF relay beamforming design problem which
amounts to minimize the destination output power subject to both
the individual relay transmit power constraint and the total relay
transmit power constraint, while also keeping the response to the
desired signal at a constant level:

min
w,α

Pout

s.t. α ·wH �ψT
τ = γ

Ptot ≤ P0

Pi ≤ P0 i, i = 1, · · · , R (9)

where Pout is the destination output power, Ptot is the total relay
transmit power with P0 as its budget, and Pi is the individual trans-
mit power of the ith relay with P0 i as its budget. Also note that the
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linear constraint is based on the ”Desired Signal” term of (8), where
γ ∈ R is a pre-defined system parameter that indicates the constant
response level to the desired signal.

First, we derive the expressions for the output power Pout. Ac-
cording to the expression for output signal decomposition (8), the
output power at the destination side is given by

E|z(m)|2 = |α|2 ·wHQ(τ)
s w + |α|2 ·wHQ

(τ)
i w

+ |α|2 ·wHQnw + |α|2σ2
v, (10)

where

Q(τ)
s = Ps · �ψT

τ
�ψ∗
τ ,

Q
(τ)
i = Ps · Ψ̄T

τ Ψ̄
∗
τ ,

Qn = σ2
n · blkdiag{GT

1 G
∗
1, · · · ,GT

RG
∗
R}. (11)

Next, we derive the expressions for the transmit power at the re-
lay side. According to the network signal model, the transmit signal
from the ith relay is expressed as

ti(m) = s(m) ∗ fi(m) ∗ hi(m) + ni(m) ∗ hi(m). (12)

It can be further expressed in matrix form as:

ti(m) = (Fihi)
T s̃(m) + hT

i ñi(m), (13)

where s̃(m) = [s(m), s(m− 1), · · · , s(m− Lf − Lh + 2)]T ,
ñi(m) = [ni(m), ni(m − 1), · · · , ni(m − Lh + 1)]T , and
Fi is an (Lf + Lh − 1) × Lh column-circulant matrix with
[fi(0), · · · , fi(Lg − 1),01×(Lh−1)]

T as the first column, which
has a similar structure to matrix Θi defined in (5). According to
(13), we can obtain the individual relay transmit power as

Pi = E|ti(m)|2 = hT
i (Ps · FT

i F
∗
i + σ2

n · ILh)h
∗
i . (14)

Define a notation Di = diag{mi}⊗(Ps·FT
i F

∗
i+σ2

n·ILh), where ⊗
denotes the Kronecker product, and mi = [01×(i−1), 1,01×(R−i)]
is a 1 × R vector with the ith element being the only non-zero ele-
ment, then (14) can be further rewritten as

Pi = wHDiw. (15)

Consequently, the total relay transmit power is obtained as

Ptot =

R∑
i=1

Pi = wHDw, (16)

where D =
∑R

i=1 Di.

Therefore, using (10), (15) and (16), the problem formulation
(9) is rewritten as

min
w,α

|α|2 ·wH
(
Q(τ)

s +Q
(τ)
i +Qn

)
w + |α|2σ2

v

s.t. α ·wH �ψT
τ = γ

wHDw ≤ P0

wHDiw ≤ P0 i, i = 1, · · · , R. (17)

3.2. Relation to SINR Maximization Approach

Now we show that the proposed minimizing output power scheme
is in fact equivalent to the scheme of “SINR maximization under
total/individual relay power constraint” in [6], in terms of achieving
the optimal output SINR performance.

According to the linear constraint in (17), we have α =

γ/(wH �ψT
τ ). Substituting this expression for α into the objec-

tive function of (17) and also noting wHQ
(τ)
s w = Ps · |wH �ψT

τ |2
given by (11), the optimization variable α in (17) is eliminated, and
we obtain a problem:

min
w

γ2Ps +
γ2Ps ·

(
wH

(
Q

(τ)
i +Qn

)
w + σ2

v

)
wHQ

(τ)
s w

s.t. wHDw ≤ P0

wHDiw ≤ P0 i, i = 1, · · · , R. (18)

Note that γ2Ps is a constant term in the objective function and can be
omitted without affecting the optimal solution for variable w. Thus
(18) can be further recast to a maximization problem:

max
w

wHQ
(τ)
s w

wH
(
Q

(τ)
i +Qn

)
w + σ2

v

s.t. wHDw ≤ P0

wHDiw ≤ P0 i, i = 1, · · · , R. (19)

However, this is just the “SINR maximization under total/individual
relay power constraint” formulation in [6] (although the expression

of w, Q
(τ)
s , Q

(τ)
i and Qn are totally different). Here we also note

that the optimal solution for w is irrelevant of parameter γ. That is,
the parameter γ does not affect the optimal SINR, but it does control
the output power.

Despite the equivalence in SINR performance between the two
formulations, we will subsequently show that our proposed formu-
lation requires a lower computational load for solving the problem.

3.3. Problem Solution

To adopt efficient numerical methods, we transform the original
problem (17) to an SOCP. To begin with, using the linear constraint

α ·wH �ψT
τ = γ and the definition of Qs in (11), we can obtain

|α|2 ·wHQ(τ)
s w = Ps · |α ·wH �ψT

τ |2 = γ2Ps. (20)

Thus the term (|α|2·wHQ
(τ)
s w) in the objective of (17) can be omit-

ted without affecting the optimal solution. By further doing variable
substitution ŵ = α ·w, problem (17) can be recast as

min
ŵ,α

ŵH
(
Q

(τ)
i +Qn

)
ŵ + |α|2σ2

v

s.t. ŵH �ψT
τ = γ∥∥∥ŵHD1/2

∥∥∥
2
≤ |α|√P0∥∥∥ŵHD

1/2
i

∥∥∥
2
≤ |α|√P0 i, i = 1, · · · , R. (21)

where D1/2 and D
1/2
i are the principal square roots of matrices D

and Di, respectively. Observing the power constraints of (21), we
note that an arbitrary phase rotation of α does not affect the objective
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function. Hence, without loss of generality, we can assume α is real
valued. Moreover, by defining the following notations:

b(τ) = [�ψτ , 0]
T , u = [ŵT , α]T ,

Q̃(τ) =

[
Q

(τ)
i +Qn 0RLh×1

01×RLh σ2
v

]
,

d = [01×RLh ,
√
P0]

T , D̃ =

[
D1/2 0RLh×1

01×RLh 0

]
,

di = [01×RLh ,
√
P0 i]

T , D̃i =

[
D

1/2
i 0RLh×1

01×RLh 0

]
,

problem (21) can be solved via the following optimization:

min
u

∥∥∥uHQ̃(τ)
∥∥∥
2

s.t. uHb(τ) = γ

Im{uend} = 0∥∥∥uHD̃
∥∥∥
2
≤ uHd∥∥∥uHD̃i

∥∥∥
2
≤ uHdi, i = 1, · · · , R, (22)

where uend denotes the last element of vector u, i.e., α. By intro-
ducing an auxiliary variable t, problem (22) can be further rewritten
as a standard SOCP:

min
u,t

t

s.t.
∥∥∥uHQ̃(τ)

∥∥∥
2
≤ t

uHb(τ) = γ

Im{uend} = 0∥∥∥uHD̃
∥∥∥
2
≤ uHd∥∥∥uHD̃i

∥∥∥
2
≤ uHdi, i = 1, · · · , R. (23)

which can be efficiently solved using interior point methods [11,12].
We note that in [6], the scheme of “SINR maximization subject

to individual relay power constraints” is solved as a feasibility prob-
lem using the bisection search technique. That is, the SOCP feasi-
bility problem has to be solved multiple times for finding a solution,
and the number of times of solving SOCP depends on the initial
value and the termination condition (error tolerance). However, the
proposed approach solves an SOCP (23) only once, while it is also
shown to be equivalent to the SINR maximization in terms of out-
put SINR performance. The worst-case complexity of solving (23)
using interior point method is comparable to that of solving one it-
eration of SINR maximization, since in terms of problem dimension
problem (23) has only one more variable than the SINR maximiza-
tion problem of [6]. Hence, the proposed approach consumes lower
computational resources to achieve the optimal SINR.

4. SIMULATION RESULTS

We consider a network where the number of relays is R = 10.
The relay noise power and destination noise power are assumed
to be σ2

n = σ2
v = 1, and the source power Ps is 10 dB higher

than the noise power. The coefficients of channel impulse re-
sponses are modeled as independent quasi-static Rayleigh fad-
ing, and are hence generated as zero-mean complex Gaussian
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random variables with the exponential power delay profile [13]
p(m) = (1/σt) · ∑Lx−1

l=0 e−m/σtδ(m− l), where σt is the delay
spread factor and here σt = 2 is assumed, and Lx = Lf and
Lg for the length of the backward channels and forward channels,
respectively. Assume Lf = Lg = 5, and Lh = 5.

In Fig. 2, we show the output SINR performances of the pro-
posed approach and SINR maximization of [6], with respect to the
individual power budget. We assume all the relays have the same
power budget P0 i, and the total power budget is P0 = 8P0 i. The
error tolerance for the bisection search is set to be ε = 0.1. There-
fore, we can see that if the error tolerance is not small enough, the
SINR maximization approach which needs bisection search shows
inferior performance. In Fig. 3, we show the average number of
bisection iterations, corresponding to result of Fig 2. We note that
for the SINR maximization approach, the iteration number increases
with the increase of output SINR. While the proposed approach is
not iteratively solved, and thus it always requires one iteration only.

5. CONCLUSION

We have proposed an alternative FF relay beamforming approach,
which is based on output power minimization criterion. We demon-
strated that the proposed approach is equivalent to the SINR maxi-
mization scheme and have lower computational load.
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