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ABSTRACT

A passive localization algorithm is proposed for moving

sources emitting man-made signals. The method models

the received signals on two sensors as (singularly) almost-

cyclostationary. It is not based on the usual so called narrow-

band assumption that limits bandwidth, data-record length,

and relative radial speed between source and sensors. Thus,

unlike previous techniques, it statistically characterizes the

signals on the two sensors as jointly spectrally correlated

rather than as jointly almost cyclostationary. The algorithm

estimates time-scale ratio, frequency-difference-of-arrival,

and time-delay-of-arrival of the source signal impinging on

the two sensors. It is highly tolerant to noise and interference

and outperforms classical cyclostationarity-based techniques

for large data-record lengths.

Index Terms— Cyclostationarity; Spectrally correlated

signals; Doppler effect.

1. INTRODUCTION

The problem of passively locating a moving source emitting

a man-made signal has a variety of applications. They in-

clude navigation, tracking and monitoring of moving objects

for surveillance, and locating hostile jamming emitters. The

estimation of the time-delay-of-arrival (TDOA) of the wave-

fronts impinging on two sensors allows one to estimate the

direction of the source. Doppler measurements allow to esti-

mate the source radial speed with respect to the sensors.

If the relative radial speed of the source with respect to

a sensor can be assumed constant within the observation in-

terval, then the complex envelope of the received signal is an

amplitude-scaled, time-scaled, time-delayed, and frequency-

shifted version of the complex-envelope signal emitted by the

source [17, Sec. 7.3], [26, pp. 239-242]. The time-scale fac-

tor in the argument of the complex envelope can be assumed

unity (and hence neglected) under the so called “narrow-band

condition”, that is, if the product of signal bandwidth and

data-record length is much smaller than the ratio of medium

propagation speed and relative radial speed between transmit-
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ter and sensor [17, Sec. 7.5], [26, pp. 239-242]. In such a case,

the Doppler effect is just a frequency shift of the carrier.

If the source signal is almost-cyclostationary (ACS) [9],

under the narrow-band condition, cyclostationarity-based al-

gorithms for estimating TDOA [3], [8], [14], and TDOA

and frequency-difference-of arrival (FDOA) [11], [12] of the

wavefronts impinging on two sensors have been success-

fully exploited to provide accurate estimates in severe noise

and interference environments, when the disturbance sig-

nals completely overlap in time and frequency domains the

signals-of-interest (SOIs) on both sensors. These techniques

have satisfactory performance at very low signal-to-noise ra-

tio (SNR) and signal-to-interference ratio (SIR), provided that

a cycle frequency of the SOI exists which is not shared with

the disturbance signals and a sufficiently large observation

interval is available.

The narrow-band condition puts a limit on the maximum

relative radial speed between transmitter and receiver and/or

the signal bandwidth and/or the maximum data-record length

that can be adopted for cyclic statistic estimates. The limit

on the data-record length in turn puts a limit on the mini-

mum SNR and SIR for which satisfactory performance can

be achieved, specially for very fast moving sources like satel-

lites, airplanes, helicopters, and missiles.

In this paper, the case of a rapidly moving source emitting

a wide-band ACS signal is considered. Unlike all previ-

ously proposed cyclostationarity-based techniques, it is not

assumed here that the narrow-band condition is satisfied. A

technique proposed in the radar context in [19] is adapted

to estimate time-scale ratio (TSR) and FDOA of the signals

collected on two sensors. Then, exploiting a novel class

of stochastic processes, the spectrally correlated (SC) pro-

cesses [16], [17, Chap. 4], [18], the signals received on the

two sensors are jointly statistically characterized as jointly

SC. Thus, a new interference tolerant algorithm for estimat-

ing TDOA and complex-gain ratio (CGR) is proposed. The

algorithm exploits the signal-selectivity properties typical

of cyclostationarity-based techniques considered in a more

general sense for the (jointly) SC signals. The proposed

technique is named wide-band spectral coherence alignment

(WB-SPECCOA). It generalizes to the wide-band case the

SPECCOA method with compensated frequency shift [11]
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derived under the narrow-band (NB) condition and from now

referred to as NB-SPECCOA, which in turn generalizes the

SPECCOA method [8] derived for fixed sources.

The signal parameter estimation techniques in [6], [19],

and [20] are derived when the narrow-band condition is

not fulfilled. In [6] and [19], unlike in the WB-SPECCOA

method proposed here, only auto cyclic statistics are used

without exploiting the beneficial effects of cross-correlating

signals. In addition, in [6] and [19], constraints on the param-

eters to be estimated must be satisfied to avoid ambiguous

estimates. The technique in [20] exploits a known reference

signal.

Since the constraint imposed by the narrow band con-

dition does not need to be satisfied, the proposed WB-

SPECCOA technique provides satisfactory performance in

scenarios characterized by higher mobility, larger band-

widths, and larger data-record lengths with respect to those

allowed for classical cyclostationarity-based algorithms [3],

[8], [11], [12], [14]. Consequently, satisfactory performance

can be achieved at lower values of SNR and SIR. Simu-

lation results show the effectiveness of the proposed WB-

SPECCOA method and its better performance with respect to

competitive methods when the narrow-band condition is not

satisfied.

The paper is organized as follows. In Section 2, the source

location problem is described. In Section 3, the transmit-

ted and received signals are statistically characterized. TSR,

FDOA, TDOA, and CGR estimation procedures are outlined

in Section 4. Numerical results are reported in Section 5 and

conclusions are drawn in Section 6.

2. SOURCE LOCATION PROBLEM

Let x(t) be the complex envelope of the signal transmitted by

a source in relative motion with respect to two sensors and let

r1(t) and r2(t) denote the received complex-envelope signals.

If the relative radial speeds of the source with respect to

the sensors can be assumed constant within the observation

interval, then it results ri(t) = bix(si(t−τi))e
j2πνit+ni(t),

i = 1, 2, where bi are complex gains, si time-scale factors, τi
time delays, and νi = (si − 1)fc frequency shifts, with fc the

carrier frequency. Signals ni(t) are disturbance. Assuming

the useful signal on the first sensor as the reference signal,

that is, x1(t) , b1 x(s1(t− τ1)) e
j2πν1t, we have

r1(t) = x1(t) + n1(t) (1a)

r2(t) = y1(t) + n2(t) = b x1(s(t− τ0)) e
j2πνt + n2(t) (1b)

In (1b), the time-scale ratio (TSR) s, frequency-difference

of arrival (FDOA) ν, time-delay-of-arrival (TDOA) τ0, and

complex-gain ratio (CGR) b are defined as s , s2/s1, ν ,
ν2 − sν1, τ0 , τ2 − τ1/s, b , (b2/b1) e

j2πν1sτ0 .

Using estimates of these quantities and geometry, the di-

rection of arrival of the wavefronts impinging on the two sen-

sors and the source speed can be estimated [21], [23].

Finally, note that the “narrow-band condition” that allows

to consider si ≃ 1 in the argument of the complex envelope

received signals is [17, Sec. 7.5.1]

BT ≪ 1/|1− si| ≃ c/|vi| (2)

where B is the signal bandwidth, T the data-record length,

c the medium propagation speed, and vi is the relative radial

speed between the source and the ith sensor.

3. STATISTICAL CHARACTERIZATION OF

TRANSMITTED AND RECEIVED SIGNALS

Let the source signal x(t) be ACS. That is, its autocorrelation

and conjugate autocorrelation functions are almost-periodic

functions of time [9]. The coefficients and frequencies of

the (generalized) Fourier series expansion of the (conjugate)

autocorrelation function are referred to as (conjugate) cyclic

autocorrelation functions and (conjugate) cycle frequencies.

The almost-periodicity in the time domain reflects, in the fre-

quency domain, into correlation between spectral components

that are separated by quantities equal to the (conjugate) cycle

frequencies. Thus, the Loève bifrequency spectrum [15] of

x(t) is

E
{
X(f1)X

(∗)(f2)
}
=

∑

α∈A

Sα
xx(∗)(f1) δ(f2 − (−)(α− f1))

(3)

where X(f) is the Fourier transform of x(t) defined in a

distributional sense [10, Chap. 3], [17, Secs. 1.1.2, 4.2.1].

In (3), δ(·) denotes Dirac delta, (∗) is an optional complex

conjugation, (−) is an optional minus sign linked to (∗), A
is the countable set of the (conjugate) cycle frequencies, and

the (conjugate) cyclic spectra Sα
xx(∗)(f) are the Fourier trans-

forms of the (conjugate) cyclic autocorrelation functions.

Both functions with optional conjugation (∗) present and

absent are necessary for a complete second-order character-

ization of the complex-valued signal x(t) [1], [22]. From

(3) it follows that for ACS signals the support of the Loève

bifrequency spectrum is contained in lines with slopes ±1.

Let α0 and β0 be a cycle frequency and a conjugate cy-

cle frequency, respectively, of x(t). If x(t) and ni(t) are

zero-mean and do not exhibit joint cyclostationarity, it can be

shown that the (conjugate) cyclic spectra of r1(t) and r2(t)
can be expressed as

Sα1

r1r
∗

1
(f) = Sα1

x1x
∗

1
(f) + Sα1

n1n
∗

1
(f) (4a)

Sα2

r2r
∗

2
(f) =

|b|2

|s|
e−j2πα1sτ0Sα1

x1x
∗

1

(
f − ν

s

)
+ Sα2

n2n
∗

2
(f) (4b)

Sβ1
r1r1

(f) = Sβ1
x1x1

(f) + Sβ1
n1n1

(f) (4c)

Sβ2
r2r2

(f) =
b2

|s|
e−j2πβ1sτ0Sβ1

x1x1

(
f − ν

s

)
+ Sβ2

n2n2
(f) (4d)

αi = siα0 βi = siβ0 + 2νi i = 1, 2 (4e)
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where Sα
x1x

∗

1
(f) and Sβ

x1x1
(f) are the cyclic spectrum and

the conjugate cyclic spectrum, respectively, of x1(t), and

Sα
nin

∗

i
(f) and Sβ

nini
(f) those of ni(t), i = 1, 2.

A novel cross-statistical characterization of r1(t) and

r2(t) is presented here by resorting to the new class of SC

processes [16], [17, Chap. 4]. By denoting with upper-case

letter the Fourier transform defined in a distributional sense

of the corresponding lower-case letter denoting a signal, and

using (1a) and (1b), the Loève bifrequency cross-spectrum

[15] of r1(t) and r2(t) can be expressed as

E
{
R2(f1)R

(∗)
1 (f2)

}

= E
{
Y1(f1)X

(∗)
1 (f2)

}
+ E

{
N2(f1)X

(∗)
1 (f2)

}

+
b

|s|
e−j2π(f1−ν)τ0 E

{
X1

(f1 − ν

s

)
N

(∗)
1 (f2)

}

+E
{
N2(f1)N

(∗)
1 (f2)

}
(5)

where

E
{
Y1(f1)X

(∗)
1 (f2)

}
=

b

|s|
e−j2π(f1−ν)τ0

∑

α1∈A1

Sα1

x1x
(∗)
1

(f1 − ν

s

)
δ
(
f2 − (−)

(
α1 −

f1 − ν

s

))
(6)

with A1 set of (conjugate) cycle frequencies of x1(t).
From (6), it follows that when s 6= 1, the Loève bifre-

quency cross-spectrum of x1(t) and y1(t) has support con-

tained in lines with slopes different from ±1. That is, even if

both signals x1(t) and y1(t) are (singularly) ACS, they are

not jointly ACS but, rather, jointly SC. Jointly SC signals

have Loève bifrequency cross-spectrum with spectral masses

concentrated on a countable set of curves in the bifrequency

plane [17, Chap. 4]. Signals y1(t) and x1(t) are jointly SC

with support lines with (non unit) slopes ±1/s. The den-

sity of spectral cross-correlation along the support line f2 =
(−) (α1 − (f1 − ν)/s) is

S
y1x

(∗)
1

(f1) ,
b

|s|
e−j2π(f1−ν)τ0 Sα1

x1x
(∗)
1

(
f1 − ν

s

)
. (7)

4. PROPOSED METHOD

In this section, the proposed algorithm is presented to esti-

mate TSR, FDOA, TDOA and CGR. Note that, for the lo-

calization purpose, the CGR is not of interest. However, its

estimate is obtained as by-product of the TDOA estimation.

Only the phase of the CGR will be considered since of its

interest in synchronization.

The parameters si and νi can be estimated starting from

the technique proposed in [19]. Let us define

λ
rir

(∗)
i

(α) ,

∫

R

∣∣∣Ŝα

rir
(∗)
i

(f)
∣∣∣
2

df (8)

where Ŝα

rir
(∗)
i

(f) denotes the (conjugate) frequency-smoothed

cyclic periodogram obtained observing signals in [0, T ] [5],

[7], [13]. Let us assume that the values of si and νi are such

that for some cycle frequency interval Jα0 around α0 and

conjugate cycle frequency interval Jβ0 around β0 the signals

x1(t) and y1(t) have only one cycle frequency in Jα0 and

only one conjugate cycle frequency in Jβ0 . Moreover, let us

assume that Sα
nin

∗

i
(f) = 0 for α ∈ Jα0 and Sβ

nini
(f) = 0 for

β ∈ Jβ0 . The following

α̂i = arg max
α∈Jα0

λrir
∗

i
(α) β̂i = arg max

β∈Jβ0

λriri(β) (9)

provide consistent estimates for αi and βi [4]. Then, ac-

counting for (4e), estimates of si and νi can be obtained by

ŝi = α̂i/α0 and ν̂i = (β̂i − ŝiβ0)/2, and estimates of the

TSR and FDOA are given by

ŝ , ŝ2/ŝ1 = α̂2/α̂1 ν̂ , ν̂2 − ŝν̂1 = (β̂2 − ŝβ̂1)/2 . (10)

Let us now make the mild assumption that the densities

of spectral correlation of E{N2(f1)X
(∗)
1 (f2)}, E{X1((f1 −

ν)/s)N
(∗)
1 (f2)} and E{N2(f1)N

(∗)
1 (f2)} are zero along the

support line f2 = (−) (α1 − (f1 − ν)/s). Thus, the spectral

(cross-)correlation densities in (7) can be replaced by those of

the noisy signals (see (1a) and (1b)) and we have

S
r2r

(∗)
1

(f1) =
b

|s|
e−j2π(f1−ν)τ0 Sα1

r1r
(∗)
1

(
f1 − ν

s

)
(11)

The parameters τ0 and b can be estimated by minimizing

the square error (for functions of f1 ∈ L2(R)) between esti-

mates (denoted by an hat) of the left- and right-hand sides of

(11). That is,

(̂b, τ̂0) = arg min
(ζ,τ)

∥∥∥Ŝ
r2r

(∗)
1

(f1)

−
ζ

|ŝ|
e−j2π(f1−ν̂)τ Ŝα̂1

r1r
(∗)
1

(
f1 − ν̂

ŝ

)∥∥∥
2

2
. (12)

By equating to zero the gradient of the norm in (12) which is

function of the complex variable ζ and of the real variable τ ,

and considering ζ and ζ∗ as independent variables [2], leads

one to consider the function

F (τ) ,
e−j2πν̂τ

|ŝ|

∫

R

Ŝ
r2r

(∗)
1

(f) Ŝα̂1

r1r
(∗)
1

(f − ν̂

ŝ

)∗

ej2πfτdf

(13)

and take as estimates of TDOA and angle of the CGR

τ̂0 = argmax
τ

|F (τ)| φ̂ = ∠F (τ̂0) . (14)

The estimate Ŝ
r2r

(∗)
1

(f) is made by the cross-periodogram

frequency smoothed along the estimated support line f2 =
(−)(α̂1 − (f1 − ν̂)/ŝ) [17, Secs. 4.6, 4.7].

The estimation procedure of (14) is named WB-SPECCOA.

It reduces to the NB-SPECCOA technique [11] in the narrow-

band case, that is, if si = 1 can be assumed in the argument

of the complex envelopes.
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5. NUMERICAL RESULTS

The moving source is a low earth orbit (LEO) satellite

at altitude h = 200 km and with orbital speed vo =
28061.5 km h−1. The satellite transmits a binary direct-

sequence spread-spectrum (DSSS) signal with number of

chip per bit Nc = 64, chip period Tc = 0.06 µs, bit period

Tp = NcTc, and carrier frequency fc = 2 GHz. Assuming

an approximate bandwidth B ≃ 1/Tc = 16.5 MHz, the

complex-envelope received signals are uniformly sampled

with sampling frequency fs = 4B = 66 MHz, which is

the minimum required sampling frequency to avoid aliasing

in second-order cyclic statistics of the sampled signal [9],

[17, Sec. 1.3.9]. The distance between sensors is 100 km.

The values of TSR, FDOA, and TDOA are s = 1 + 10−5,

ν = 21 kHz = 0.00029/Ts, and τ0 = −0.8 ms which cor-

responds to τ0 mod Tp = −15.5Ts, where Ts = 1/fs and

amod b is the modulo operation with values in (−b/2, b/2].
These are typical values when the observation angles from

sensors and from satellite are not too close to 0, π/2, or π.

Each disturbance term n1(t) and n2(t) contains circular

additive white Gaussian noise (AWGN) with SNR = 0 dB in

the band (−fs/2, fs/2). In addition, the same jamming bi-

nary phase-shift keying (BPSK) signal with carrier frequency

fc and symbol period Tpi = 5Ts impinges on each sensor

with different time-scale, frequency shift, and delay. On each

sensor SIR = – 3 dB and the power spectrum of the interferer

BPSK signal completely overlaps that of the useful DSSS sig-

nal. In addition, the interfering terms on the two sensors are

correlated. In the experiments, α0 = β0 = 1/Tp.

The performance of the proposed WB-SPECCOA method,

in terms of normalized sample root mean-squared error (rmse)

of estimated parameters is compared with that of the NB-

SPECCOA method. This latter method is chosen for com-

parison since, among the cyclostationarity-based techniques,

SPECCOA and NB-SPECCOA are the most robust against

noise and interference [3], [11], and since WB-SPECCOA

reduces to NB-SPECCOA under the narrow-band condi-

tion. Moreover, the classical estimation methods based on

the narrow-band cross-ambiguity function (NB-CAF) [26,

Chap. 10] and the wide-band cross-ambiguity function (WB-

CAF) [24], [25], [27] are also considered since in AWGN and

for high SNR the former is optimal in the narrow-band case

and the latter is suboptimal close to optimal in the wide-band

case. In Figure 1, the sample rmse of (a) ŝ/|s|, (b) ν̂Tp, (c)

τ̂0/Tp, and (d) φ̂/2π, with φ̂ phase of b̂, are reported as func-

tion of the number Nb of processed bits. One hundred Monte

Carlo trials are carried out to evaluate sample statistics.

It results T = NbNcTc ≃ NbNc/B, and the narrow-band

condition (2) reduces to NbNc ≪ 1/|1 − s|, that is, Nb ≪
105/64 ≃ 210.6.

From Figs. 1 (a)–(d) it follows that the proposed WB-

SPECCOA method outperforms the competitors when the

narrow-band condition is not satisfied (Nb > 210). In con-

trast, when this condition is satisfied, NB-SPECCOA exhibits

better performance. The bad performance of the WB-CAF

method is a consequence of bias due to the presence of the

strong correlated interferers on the two sensors.
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−4

 log
2
(N

b
)

(a)   rmse[s]/|s|     
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Fig. 1. Normalized sample rmse of estimated parameters as func-

tion of the number Nb of processed bits. (�) WB-SPECCOA; (∗)

NB-SPECCOA; (◦) WB-CAF; (▽) NB-CAF. (a) rmse of ŝ/|s|; (b)

rmse of ν̂Tp; (c) rmse of τ̂0/Tp; (d) rmse of φ̂/2π.

6. CONCLUSION

The WB-SPECCOA method is proposed for localizing a mov-

ing source emitting an almost-cyclostationary signal. It is

based on noisy measurements of the source signal impinging

on two sensors. The method does not assume the narrow-

band condition be satisfied and models the signals on the two

sensors as jointly spectrally correlated. It provides estimates

of the TSR, FDOA, TDOA and CGR of the signals collected

on the two sensors. It has good performance with data-record

lengths that can be significantly larger than those that can be

adopted by the classical cyclostationarity-based methods that

assume the narrow-band condition is satisfied. Thus it can

be suitably exploited at values of SNR and SIR lower than

those for which classical methods exhibit good performance.

Simulation experiments have shown the effectiveness of the

proposed method to provide reliable estimates in the presence

of severe noise and interference environments outperforming

the most robust classical cyclostationarity-based method for

FDOA and TDOA estimation.
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