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ABSTRACT

This work explores performance vs. communication energy trade-
offs in wireless sensor networks that use the recently proposed cut-
set deployment strategy in which sensors are placed densely along a
grid of intersecting lines. For a given number of sensors, intersensor
spacing is less for a cutset network than for a conventional lattice
deployment, so that cutset networks require less communication en-
ergy, albeit with some potential loss in network performance. Previ-
ous work analyzed the energy-performance tradeoffs for square-grid
cutset networks in the context of specific decentralized algorithms
for source localization based on received signal strength (RSS). The
current work also considers the RSS based source localization prob-
lem. However, it takes a more fundamental approach to analyzing
the tradeoff by considering a centralized task, minimum energy com-
munication paths, Maximum Likelihood estimation algorithms and
Cramér-Rao bounds. Moreover, it analyzes triangular and honey-
comb cutset deployments, in addition to square-grid ones. The re-
sults indicate that cutset networks offer sizable decreases in energy
with only modest losses of performance.

Index Terms— Wireless sensor networks, source localization.

1. INTRODUCTION

A common topic of research in the area of wireless sensor networks
is that of finding ways to reduce energy consumption of battery-
powered sensors, thereby increasing the overall lifetime of the net-
work. For fixed hardware constraints, network energy consumption
can be reduced by using efficient communication protocols [1–3],
distributed algorithms [4, 5], and sensor-placement strategies [6, 7].
Recently, variants on all three of the above strategies were proposed
to reduce the energy required in solving a single source, received-
signal-strength (RSS)-based localization problem [8]. The authors
proposed using a Manhattan grid sensor layout where sensors are
placed along evenly-spaced rows and columns, as shown in Figure
1(e), and showed that in the context of specific decentralized esti-
mation and communication strategies, this permitted a tradeoff in
which communication energy could be substantially reduced with
only modest decreases in performance. Previously, the Manhattan
grid topology was also used in image processing applications, such
as 2D bilevel lossy and lossless image coding [9–11] and grayscale
image reconstruction [12, 13]. A sampling theorem for Manhattan
grids has also been derived [14]. The problem of RSS-based source
localization is similar to these image processing problems in that one
is given noisy samples of an RSS “image” on the Manhattan grid,
and the goal is to reconstruct properties of that image (in this case,
the location of the source).

The current work again considers the RSS-based source local-
ization problem. However, it takes a more fundamental approach to
analyzing the tradeoff by considering a centralized task, minimum
energy communication paths, Maximum Likelihood (ML) estima-

tion algorithms and Cramér-Rao bounds. Moreover, it analyzes tri-
angular and honeycomb cutset deployments, in addition to square-
grid ones. The results again indicate that cutset networks offer siz-
able decreases in energy with only modest losses of performance.

We begin by analyzing communication energy advantages of
cutset networks in Section 2 for a many-to-one communication task.
In Section 3, we use the RSS-based source-localization problem to
demonstrate tradeoffs between estimation error and energy for var-
ious network topologies under two different noise models. Average
Cramér Rao bounds and results of an approximate ML algorithm are
used to measure error performance; these experimental results are
shown in Section 4. We conclude our findings in Section 5.

2. CUTSET NETWORKS

When analyzing sensor networks, it is common to assume that sen-
sors are randomly distributed, as in Fig. 1(a). However, in some ap-
plications, the network designers are free to choose where sensors
are placed, perhaps using one of the lattice layouts in Fig. 1(b,c,d).
We show that these are not as efficient at transmitting data as the
cutset networks shown in Figure 1(e,f,g), which are formed by first
placing sensors at the vertices of square, triangular, and hexagonal
tessellations, respectively, and then evenly placing k− 1 sensors be-
tween each vertex. Figures 1(e,f,g) show cutset networks for k = 5.

We wish to compare networks with a common sensor density ρ.
For fixed ρ, a cutset network of parameter k will have intersensor
spacing λ given by Table 1, and the tessellating polygon will have
side length kλ. Thus, for fixed ρ, as k increases, intersensor spacing
λ decreases as O(k−1/2), but the tessellating cell area increases as
O(k). When these cell areas are large, their center points become
increasingly distant from the closest sensor, which can lead to de-
creasing performance in a typical signal processing task.

For tractability, we restrict networks to a circular region BR =
{t : ‖t‖ ≤ R} of radius R. To generate a network with approxi-
mately 250 sensors, we set the target density to be ρ = 250/πR2,
place a first sensor at the origin, generate an infinite network with
the desired geometry using the intersensor spacing λ in Table 1, and
finally, truncate the network to BR. As a result, the final number of
sensors n may differ slightly from 250. Let X = {xi ∈ BR, i =
0, · · · , n − 1} denote the set of sensor locations, with x0 denoting
the sensor at the origin. For random deployments, we merely place
250 sensors randomly within BR.

Our analysis assumes the following far-field communication
model: Let α be some communication path-loss exponent between
2 and 4. If two sensors are separated by distance d communicate at
received power P0, we model the required transmission energy as

w(d) = P0d
α.

Now suppose all sensors wish to transmit one packet of data to the
sensor at x0 in order to run a centralized algorithm or make a cen-
tralized decision. Each sensor x ∈ X chooses a path, i.e., a sequence
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(e) Manhattan Network, k = 5
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(g) Honeycomb Network, k = 5

Fig. 1: Wireless networks with n ≈ 250 sensors placed in a circular region of radius R = 50m. The shaded region depicts possible locations
of a randomly placed source in localization experiments. (a,b,c,d) show traditional network layouts; (e,f,g) show proposed cutset networks.
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Table 1: Network quantities for P0 = 1. Note that c(r, φ) is π
3

periodic for Triangle and Honeycomb networks.

of sensor locations xi0 = x, xi1 , xi2 , . . . , xim inX , to relay its data
to x0, engendering a path cost equal to P0

∑m
j=1 ‖xij − xij−1‖α,

and a total energy that is the sum of such over all x ∈ X . It is
possible to compute the minimum possible total communication en-
ergy consumed by the network. First, form the complete weighted
graph G = (X ,X ×X ,W ), where W is the weighting matrix con-
taining costs of direct communication between sensor nodes i and
j, i.e. [W ]ij = w(‖xi − xj‖). Dijkstra’s algorithm [15] is then
used to compute a set of minimum cost paths from the central node
to all other nodes requiring O(n2) operations; the total minimum
cost Etrue is then the total sum of weights along each of these paths.
Note that because our assumed α is greater than one, all hops in any
optimal path in a cutset network will connect neighboring sensors.

This cost can be estimated using fewer computations. Suppose
we are given a function c(r, φ) that estimates the cost of transmitting
a packet from a sensor at radius r and angle φ to the central node
x0 = 0. The total minimum energy is approximately

Etrue ≈ Esum ,
n∑
i=1

c(‖xi‖,∠xi) .

This sum requiresO(n) operations. Expressions for c(r, φ) for three
different cutset networks are given in Table 1. These expressions are

derived under the assertion that all minimum cost paths follow the
cell boundaries of the tessellation that generated the cutset network.
If n is large (specifically, the density n/πR2 is large), then we may
be able to model its local sensor density with some ρ(r, φ). The total
minimum energy is approximately

Etrue ≈ Eint ,
∫ R

0

∫ 2π

0

ρ(r, φ) c(r, φ) r drdφ .

For large networks based on tessellations, we approximate ρ(r, φ) as
a constant ρ and derive closed-form expressions for Eint; these are
given in Table 1. When k is large and k, R, ρ and α are fixed, hon-
eycomb networks require the least energy. Specifically, Manhattan
networks and triangular networks require 3(α−1)/4 and 1

2
3α/2 times

more energy than honeycomb networks, respectively.
Fig. 2 compares the output of Dijkstra’s algorithm to the sum and

integral approximations for ρ = 250/πR2 and R = 50m. These
approximations performed reasonably well. As expected, the hon-
eycomb networks outperformed the other networks for fixed k. A
misleading part of Fig. 2 is that the honeycomb network consumed
less energy than predicted and required more energy for k = 5 than
4. This occurred because the k = 4 network contained only 235 sen-
sors, whereas the k = 5 network contained 259. Actually, because
λ decreases, the energy-per-sensor decreased from k = 4 to k = 5.
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Fig. 2: Energy estimates for n ≈ 250 and k = {1, 2, 3, 4, 5}. All
sum approximation estimates (2) had no more than 3% error, and all
integral approximation estimates (2) had no more than 12% error.

We suspect two phenomenon contribute to the energy efficiency
of honeycomb networks; both are derived from the assertion that
cheapest paths in cutset networks lie along tessellation edges. First,
the recently proven [16] “honeycomb conjecture” states that “any
partition of the plane into regions of equal area has perimeter at
least that of the regular hexagonal honeycomb tiling” [16]. Com-
bining this with our assertion suggests that the sensor spacing λ
may be smallest for honeycomb networks at fixed k and density ρ.
Secondly, the cheapest communication path typically deviates less
from an ideal straight-line path for Honeycomb networks than for
the other networks. These hypotheses warrant further investigation.

3. NOISE MODELS FOR ENERGY-BASED SINGLE
SOURCE LOCALIZATION

Let us now investigate the performance of cutset networks in the
source localization problem. Suppose a source at location θ ∈ BR
is emitting electromagnetic or acoustic waves. Our goal is to es-
timate θ using noisy measurements of the received signal strength.
Let y(θ) ∈ Rn+ denote a vector of RSS at the sensor nodes under no
noise. If the sensors are sufficiently far apart (no closer than some
ε > 0), we can assume the following far-field sensing model, where
the ith element of y(θ) is modeled according to

yi(θ) =
A

‖xi − θ‖β
,

where A is the reference power of the signal at one meter and β is
some sensing path-loss exponent, typically between 2 and 4 [17].

We consider two noise models: the Additive White Gaussian
Noise (AWGN) model and the log-normal (LN) model. Excellent
descriptions of both models are given in [17, 18]. Under the AWGN
model, the observed RSS at node i is

yi = yi(θ) + ui ,

where each ui is zero-mean i.i.d. Gaussian noise with variance σ2.
Thus, our observations y = [yi]

n
i=1 are distributed asN (y(θ), σ2I).

In our experiments, we thresholded any negative yi value to zero in
order to avoid negative RSS readings.
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Fig. 3: MLE error distribution for Manhattan grid with n ≈ 250
sensors and k = 5, search window of circle of radius 30, coarse
search resolution 0.15m, fine search resolution 0.01m, 20000 trials.

The log-normal model is slightly more realistic than the AWGN
model, as it as been observed in practice [19–22] and derived analyt-
ically [23]. Under the LN model, observations are Gaussian in the
log domain, i.e. the RSS in dB at the ith sensor node is

yi,db = 10 log10 yi(θ) + vi ,

where each vi is zero-mean i.i.d. Gaussian noise with known stan-
dard deviation σdb. Our vector of observations ydb = [yi,db]

n
i=1 is

normally distributed asN (10 log10 y(θ), σ
2
db), where the log10 is an

abuse of notation denoting an element-wise logarithm. The standard
deviation σdb is typically observed to be between 4 and 12 [20].

3.1. Cramér–Rao Bounds

We briefly derive the Cramér–Rao bounds (CRB’s) for these models.
The reader may refer to [17, 18] for more thorough derivations.

Our goal is to estimate θ = [θ1, θ2]
T from RSS observations yi.

If z is a random vector distributed as N (µ(θ), σ2I), then the jk-th
element of the Fisher information matrix F is

[F ]jk =
1

σ2

∂µT

∂θj

∂µ

∂θk
.

The variance of any unbiased estimator of the jth unknown coor-
dinate θ̂j given some observations z is lower bounded according to
Var(θj) ≥ [F−1]jj ; this is known as the Cramér–Rao Bound. Un-
der the AWGN model, z = y and

∂yi
∂θj

= βA
(xij − θj)
‖xi − θ‖β+2

.

Similarly, under the LN model, z = 10 log10 y(θ), and

∂(10 log10 yi)

∂θj
=

10β

ln 10

(xij − θj)
‖xi − θ‖2

.

These derivatives are easily computable, and the CRB can be calcu-
lated via an inversion of the 2× 2 Fisher information matrix F .

3.2. Maximum Likelihood Estimation

Given some or all sensor observations yi, under both noise models,
the maximum likelihood (ML) solution can be found by minimizing
the negative-log likelihood function. Under the AWGN model, the
ML solution is given by solving the nonlinear least-squares problem

θ̂ML = argmin
θ

n∑
i=1

[yi − yi(θ)]
2 .
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Fig. 4: Experimental results for MLE and CRB experiments for both noise models. Solid lines indicate MLE, and dashed lines indicate CRB.
The log-normal plot includes a zoomed-in plot for closer comparison. The numbers along each data point indicate the k value of the network.

Similarly, under the LN model, the ML solution is given by

θ̂ML = argmin
θ

n∑
i=1

[yi,db − 10 log10 yi(θ)]
2 .

In centralized applications, all sensor data is transmitted to a
central node or fusion center. Any methods provided in [18] can be
used to solve this ML problem. We implemented their multiresolu-
tion search method, where θ̂ML is calculated by substituting a large
number of candidate θ values on a grid, first at a coarse search reso-
lution, and then at a fine resolution centered at the coarse estimate.

4. EXPERIMENTAL RESULTS

To compare the performance of various networks, we followed the
following procedure. For a circular region BR with radius R = 50,
we generated networks of network density ρ = 250/πR2 according
to the process in Section 2. For a random network (Fig. 1(a)), the
sensor positions were randomized for each trial. For deterministic
networks, we generated Manhattan, triangular and honeycomb net-
works with k = {1, 2, 3, 4, 5}. Note that k = 1 corresponds to the
lattices shown in Fig. 1(b,c,d), and a triangular network with k = 1
is equivalent to a triangular network with k = 2 at the same density.
Cutset networks with k = 5 are shown in Fig. 1(e,f,g). Energy us-
age was measured by calculating Etrue using Dijkstra’s Algorithm,
as described in Section 2. For each network type, 10, 000 trials were
performed for both the AWGN and LN noise models using reference
powers A = 100, sensing path-loss α = 2, communication path-
loss β = 2, communication received-power P0 = 1, AWGN noise
variance σ2 = 1, and log-normal noise standard deviation σdb = 4.

In each trial, a random theta was placed uniformly near the cen-
ter of the network within the red shaded regions in Fig. 1. The CRB
was calculated for the current θ value, a new realization of noisy
data was generated, and the multiresolution MLE algorithm was per-
formed to obtain an estimate θ̂ML using a coarse grid search of 1m
over the entire network, followed by a fine grid search of 0.01m cen-
tered at the coarse estimate. Upon completion of all trials, the aver-
age CRB along each coordinate θ1 and θ2 was calculated, and then
the root-sum of these two average CRB’s was computed, obtaining a
lower bound on Root Mean Squared Error (RMSE) under a uniform

prior for θ. Additionally, the RMSE of the ML estimates were cal-
culated. The results for both noise models are plotted in Figure 4.
Figure 3 shows the results of an additional experiment designed to
show the distribution of MLE errors for a k = 5 Manhattan grid.

Figure 4 shows how cutset networks offer significant increases in
energy efficiency over random networks and lattice networks with-
out surrendering much accuracy. This is shown in both the results
of the MLE experiments and the average CRB calculations. The
honeycomb networks with k = 4 had the greatest gains in energy
efficiency, offering a factor of 2 improvement over random networks
and lattices. These energy gains are even more significant for larger
values of the communication path-loss exponent α. We note that an
explanation was given in Section 2 for why energy increased from
k = 4 to 5 for honeycomb networks. Finally, as expected, Figure 3
show how MLE performed much better near the intersection of Man-
hattan grid lines, and much worse near the center of squares where
the distance to the nearest sensor was maximized.

5. CONCLUSIONS AND ACKNOWLEDGMENTS

Previously, it was found that Manhattan grid sensor deployments al-
low for a significant reduction in communication energy over ran-
dom or lattice deployments with only a modest loss in error perfor-
mance for the problem of decentralized RSS localization [8]. This
new work provides analytical and experimental evidence for an iden-
tical performance–energy tradeoff, but in the context of a centralized
RSS localization problem. Furthermore, in addition to Manhattan
grid networks, this tradeoff is also observed in triangular and honey-
comb networks. In particular, our results suggest that there may be a
fundamental advantage of honeycomb networks over other networks
in terms of energy efficiency, which should be further investigated
in future research. More efficient, decentralized algorithms for solv-
ing the source localization problem in cutset networks, such as the
algorithm in [8], should also be investigated. Finally, future work
should consider communication issues in cutset networks, such as
scheduling, routing, and bounds on network throughput.

The authors would like to thank Robert P. Dick of the University
of Michigan EECS department for his helpful insights.
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