
DISTRIBUTED TOTAL LEAST SQUARES ESTIMATION OVER NETWORKS

Roberto López-Valcarce∗

Universidade de Vigo, Spain

Silvana Silva Pereira†, Alba Pagès-Zamora†

Universitat Politècnica de Catalunya, Spain

ABSTRACT
We consider Total Least Squares (TLS) estimation in a net-
work in which each node has access to a subset of equations
of an overdetermined linear system. Previous distributed ap-
proaches require that the number of equations at each node be
larger than the dimension L of the unknown parameter. We
present novel distributed TLS estimators which can handle as
few as a single equation per node. In the first scheme, the net-
work computes an extended correlation matrix via standard
iterative average consensus techniques, and the TLS estimate
is extracted afterwards by means of an eigenvalue decomposi-
tion (EVD). The second scheme is EVD-free, but requires that
a linear system of size L be solved at each iteration by each
node. Replacing this step by a single Gauss-Seidel subiter-
ation is shown to be an effective means to reduce computa-
tional cost without sacrificing performance.

Index Terms— Total Least Squares, distributed estima-
tion, wireless sensor networks.

1. INTRODUCTION

We consider the problem of parameter estimation under a lin-
ear model, in a network with each node acquiring a small
number of measurements (possibly just one) and limited to
communicating with its immediate neighbors only. The goal
is a distributed implementation approaching the performance
of the optimal centralized estimator having access to all obser-
vations across the network. Distributed ordinary (or linear)
least squares (OLS) estimation has been well studied, and a
variety of implementations are available [1–4]. The OLS es-
timator is (implicitly or explicitly) based on the assumption
that the observations (or output data) are noisy but that the
regressor (or input data) is noise-free. However, there exist
situations in which the latter assumption may not hold, and
noise is also present in the regressor [5–7]. Under those cir-
cumstances, the OLS estimate will be biased in general.

Total Least Squares (TLS) estimation is a well-known al-
ternative when dealing with noisy input and output data not
∗Supported by the Spanish Government, ERDF funds (TEC2010-21245-

C02-02/TCM DYNACS, CONSOLIDER-INGENIO 2010 CSD2008-00010
COMONSENS) and the Galician Government (CN 2012/260 AtlantTIC)
†Supported by the Spanish Government, ERDF funds (TEC2010-19171

MOSAIC, CONSOLIDER-INGENIO 2010 CSD2008-00010 COMON-
SENS) and the Catalan Government (2009SGR-01236 AGAUR).

only in numerical analysis or statistics [8, 9], but also in en-
gineering fields like adaptive filtering or spectrum sensing
[10, 11]. A distributed TLS scheme was proposed in [12]
with proven convergence to the exact TLS solution at each
node. Due to the fact that each node must solve a local TLS
problem at each iteration, the scheme in [12] has important
drawbacks. The first one is that the number of measurements
available at each node must be strictly larger than the dimen-
sion of the unknown parameter; otherwise the local problem
is underdetermined at that node, even if the global problem is
overdetermined. The second drawback of [12] is complexity:
to solve its local TLS problem, at each iteration each node
must perform an eigenvalue decomposition (EVD) whose or-
der is the dimension of the parameter. The low-complexity
variant in [13] replaces the EVD by a single subiteration of
the inverse power method, which amounts to solving a linear
set of equations of the same order at each iteration. This may
still be a demanding task for nodes with limited resources. In
addition, the same requirement as in [12] regarding the mini-
mum number of observations per node applies to [13].

We present two novel distributed TLS methods with the
following differences with respect to [12, 13]. First and fore-
most, there is no minimum requirement for the number of
measurements per node for either of our methods. Secondly,
their complexity is much less than that of [12] and compa-
rable to (and even less than) that of [13]. Our first method
runs a number of average consensus iterative processes in
parallel and, after convergence, each node obtains the esti-
mate from a single EVD of certain matrix (in contrast, [12]
requires one EVD per iteration). The second scheme is EVD-
free, but similarly to [13], at each iteration each node must
solve a set of linear equations. Replacing this step by a sin-
gle Gauss-Seidel subiteration significantly reduces the load
at the nodes, and this is achieved without sacrificing perfor-
mance. Our methods accommodate a matrix-valued parame-
ter, whereas [12,13] consider only a vector-valued parameter.

Our framework is akin to [1–4,12,13]: each node collects
a data snapshot and then estimation is performed based on
those; i.e., the data do not ’stream in’. TLS-like estimators
with streaming data do exist, usually in a stochastic, adap-
tive filtering framework: see e.g. [10, 14, 15] for standalone
processing, and [16] for a distributed in-network approach.
Extending our schemes to streaming data applications will be
the subject of future work.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 7630

2. PROBLEM STATEMENT

Consider the problem of fitting a linear regression model:
given data matrices Z ∈ RN×L and Y ∈ RN×M , an esti-
mate of the parameter X ∈ RL×M is sought in order to have
ZX ≈ Y . We assume that the system is overdetermined,
i.e., N > L, so that in general there is no exact solution for
X . The Ordinary Least Squares (OLS) estimator of X is

X̂OLS = argmin
X
‖Y −ZX‖2F = (ZTZ)−1ZTY , (1)

with ‖ · ‖F the Frobenius norm. In a stochastic setting, (1)
provides the Best Linear Unbiased Estimator (BLUE) when
Z is noise-free and Y is corrupted by zero-mean white noise;
if the noise is Gaussian, then (1) is also the Maximum Likeli-
hood (ML) estimator [17]. When Z is noisy as well, the OLS
estimator is biased in general. The TLS estimator is a suitable
alternative [8, 9]: it is obtained as the solution to

min
X,H

‖Z −H‖2F + r2‖Y −HX‖2F , (2)

where H denotes a candidate noise-free regressor matrix.
The scalar r2 > 0 allows to assign different weights to the
two terms in the cost function in (2). For small r2, the mini-
mization of (2) w.r.t. H yields Ĥ ≈ Z, so the TLS estimate
of X will approach the OLS estimate (1). Thus, the noisier
the regressor matrix Z is suspected, the larger r2 should be.
In a stochastic framework, the TLS estimator is the ML es-
timator when the noises corrupting Z and Y are zero-mean
i.i.d. Gaussian, and the variance of the noise affecting the
regressor matrix Z is r2 times that of the noise affecting Y .

We seek distributed schemes for solving (2) over a net-
work, in which each node can only communicate with a small
subset of nodes (neighbors), and without a ”fusion center.”
The network is assumed undirected (if link i → j from node
i to node j exists, then link j → i exists as well) and con-
nected (there exist a path between any pair of nodes). Each
node has access to a data subset, i.e., a subset of the rows of
Y and Z. It is assumed that all nodes agree on the value of
the design parameter r. We first review the centralized case,
in which Y and Z are available at the processing entity.

3. CENTRALIZED TLS

The TLS estimate can be found as follows. Define the ex-
tended data matrix P ,

[
Z rY

]
∈ RN×(L+M), and

let P = UΣV T be its singular value decomposition (SVD),
with Σ = diag(σ1 · · · σL+M) and σ1 ≤ · · · ≤ σL+M the
ordered singular values. Partition V ∈ R(L+M)×(L+M) as

V =

[
V1 V3

V2 V4

]
, V1 ∈ RL×M , V2 ∈ RM×M . (3)

Then, provided V2 is invertible1, one has (see, e.g., [9]):

X̂TLS = −1

r
V1V

−1
2 . (4)

Thus, finding the TLS estimate amounts to computing an
SVD. Alternatively, note that the cost (2) is quadratic in each
of the variables X and H , so that a cyclic minimization (CM)
iterative scheme can be readily applied [18]. The cost (2) is
minimized w.r.t H holding X fixed; then, using the obtained
value of H , minimization is performed w.r.t. X , and the pro-
cess is repeated. Equating to zero the gradients of (2) w.r.t.
X and H , each variable can be found in terms of the other:

X = (HTH)−1HTY , (5)
H = (Z + r2Y XT)(I + r2XXT)−1

= Z + (Y −ZX)S{X}XT , (6)

where in (6) we have used the matrix inversion lemma, with

S{X} , r2(I + r2XTX)−1 ∈ RM×M . (7)

The proposed CM iteration proceeds as follows. Starting with
some initial X̂(0), and for j = 1, 2, . . ., compute

Ĥ(j) = Z + (Y −ZX̂(j−1))S{X̂(j−1)}(X̂(j−1))T , (8)

and then solve for X̂(j) in the linear system

(Ĥ(j))T Ĥ(j)X̂(j) = (Ĥ(j))TY . (9)

Incidentally, note that by choosing X̂(0) = 0, then after the
first iteration we obtain Ĥ(1) = Z and X̂(1) = X̂OLS.

Iteration (8)-(9) yields a sequence of monotonically non-
increasing values of the non-negative cost (2), so that (8)-(9)
is convergent in terms of cost function. However, one cannot
claim global convergence: for example, if X̂(0) lies near a
saddle point2 of the cost (2), then the sequence X̂(j) may
diverge, even though convergence in the cost function takes
place. Nevertheless, empirical experience suggests that taking
X̂(0) = 0 (equivalently, X̂(1) = X̂OLS) is enough to set the
iteration within the domain of attraction of the TLS solution.

The CM iteration (8)-(9) avoids the SVD of the N × (L+
M) extended data matrix, replacing it by a sequence of steps.
At each of these steps, two sets of linear equations, of sizes
M ×M and L×L respectively, must be solved. These direct
and iterative approaches to obtaining X̂TLS will constitute the
basis for the distributed TLS algorithms in the next section.

4. DISTRIBUTED TLS ALGORITHMS

The methods in Sec. 3 for computing the TLS estimate (either
directly as per (4), or via the CM iteration (8)-(9)) are cen-
tralized, in the sense that they make use of the whole dataset

1Otherwise the TLS estimate does not exist [9]. It will be assumed
throughout that V2 is invertible.

2The cost in (2), which is not convex, has no local minima or maxima, as
can be shown following steps similar to those in [19].

7631

(Y ,Z). We now focus on distributed schemes in which at
each of the N nodes in the network only a single data point is
available3. That is, if we partition Y , Z row-wise as

Y =

 yT1
...

yTN

 , Z =

 zT1
...

zTN

 , (10)

then the data available at node i is (yi, zi). The two meth-
ods proposed below involve a symmetric weight matrix W ∈
RN×N with elements Wij 6= 0 only if nodes i and j are
neighbors4, and satisfying (see [2, 20])

1TW = 1T , W1 = 1, ρ
(
W − 1

N 11T
)
< 1, (11)

with 1 ∈ RN the all-ones vector, and ρ(·) the spectral radius.

4.1. First implementation (DSC)

The distributed standard consensus (DSC) based scheme is
similar in spirit to the method in [1] for distributed OLS esti-
mation. Note that P TP = V Σ2V T , i.e., the l-th column of
V is an eigenvector of P TP associated to the eigenvalue σ2

l .
Since P = [Z rY], it follows that P TP can be written as

P TP =

[∑N
i=1 ziz

T
i r

∑N
i=1 ziy

T
i

r
∑N
i=1 yiz

T
i r2

∑N
i=1 yiy

T
i

]
, (12)

which can be obtained by standard distributed average con-
sensus methods [1, 2, 20], as follows. Node i updates a sym-
metric matrix Gi(k) which is initialized as

Gi(0) =

[
ziz

T
i rziy

T
i

ryiz
T
i r2yiy

T
i

]
∈ R(L+M)×(L+M). (13)

Let g(i)pq (k) denote the (p, q)-element of Gi(k), and let

gpq(k) ,
[
g
(1)
pq (k) g

(2)
pq (k) · · · g

(N)
pq (k)

]T
. (14)

The consensus iteration can be written as

gpq(k) = Wgpq(k − 1), k = 1, 2 . . . , (15)

involving communication among neighbors only. Under (11),
(15) converges and limk→∞ g

(i)
pq (k) = 1

N

∑N
j=1 g

(j)
pq (0) for

all i [1, 2]. Hence, one has limk→∞Gi(k) = 1
NP TP for

all i. Upon convergence of these 1
2 ((L +M)2 + (L +M))

consensus iterations running in parallel, node i extracts the
eigenvectors associated to the M smallest eigenvalues of Gi,
from which X̂TLS is obtained by means of (4).

3Generalization to settings in which some sensors may have access to
several data points simultaneously is straightforward.

4By convention, every node is neighbor to itself.

4.2. Second implementation (DCM / DCM-GS)

The DSC requires, as a final step, that each node compute
the EVD of an (L +M) × (L +M) matrix. Depending on
the nodes’ processing limitations, it may be desirable to avoid
this step. Inspired by the centralized CM approach of Sec. 3,
we present next an EVD-free distributed implementation. At
time k, node i keeps local copies of the following variables:

ĥi(k) ∈ RL, X̂i(k),Ψi(k) ∈ RL×M , Φi(k) ∈ RL×L.
(16)

The row vector ĥTi (k) constitutes a (local) estimate at node
i and time k of the i-th row of the noise-free regressor ma-
trix H , whereas X̂i(k) is the corresponding local estimate of
X . The matrices Φi(k), Ψi(k) are equivalent to the matrices
ĤT Ĥ and ĤTY of (9) but computed locally at node i.

The quantities in (16) are successively updated using in-
formation gathered by local exchanges between neighbors.
For k ≥ 1, node i performs the following. First, given X̂i(k),
the local estimate ĥi(k) is updated:

ĥi(k) = zi + X̂i(k)S{X̂i(k)}(yi − X̂T
i (k)zi). (17)

Computing the right-hand side of (17) involves5 solving an
M × M set of linear equations. Note that (17) can be in-
terpreted as a local version of the centralized CM step (8),
applied to the i-th row of the regressor matrix estimate, and
based on the current local estimate X̂i(k).

To implement a local version of the centralized CM step
(9), note that the global quantities ĤT Ĥ , ĤTY in (9) can
be written as summations over local quantities. With W a
symmetric weight matrix as in (11), and inspired by so-called
”consensus+innovations” approaches to distributed estima-
tion [21], this suggests the following update for the variables
Φi(k), Ψi(k) at node i, using information from its neighbors:

Φi(k) =
∑
j

Wij

(
βkΦj(k − 1) + αkĥj(k)ĥ

T
j (k)

)
, (18)

Ψi(k) =
∑
j

Wij

(
βkΨj(k − 1) + αkĥj(k)y

T
j

)
. (19)

Finally, node i solves for X̂i(k + 1) in

Φi(k)X̂i(k + 1) = Ψi(k). (20)

The iteration is initialized with X̂i(1) = 0 for all i, thus
ĥi(1)=zi, Φi(1)=

∑
jWijzjz

T
j , Ψi(1)=

∑
jWijzjy

T
j .

The sequences {βk}, {αk} are suitable time-varying
weights for the consensus and innovation terms, respectively,
in (18)-(19); here, by innovation we mean the new informa-
tion supplied by the update of the ĥj’s (as opposed to that
supplied by new observations, as in [21]). Possible choices
for these weight factors include (see, e.g., [21, 22]):

αk =
1

k
, βk = 1− 1

kδ
, 0 < δ < 1, k ≥ 1. (21)

5Recall the definition of the matrix-valued function S{·} in (7).

7632

Since typically one has L�M , the computational load
of (17)-(20), referred to as DCM, is dominated by the need to
solve the L×L linear system (20) at each k by all nodes. One
possible way to solve (20) is by means of a Gauss-Seidel (GS)
iterative process; since Φi(k) is symmetric positive definite,
the GS method is convergent [8]. In order to reduce the com-
putational requirements at the nodes, we propose to replace
step (20) by a single GS subiteration, taking as initial point
the estimate X̂i(k) from the previous step. Specifically, if we
decompose Φi(k) = Li(k) + Ui(k) into a lower triangular
component Li(k) and a strictly upper triangular component
Ui(k), then (20) is substituted by

Li(k)X̂i(k + 1) = Ψi(k)−Ui(k)X̂i(k), (22)

in which we must solve for X̂i(k + 1). This is done cheaply
via forward substitution, since Li(k) is lower triangular. Sim-
ulation results show no significant loss in performance if (20)
is replaced by (22). We refer to this variant as DCM-GS.

5. NUMERICAL RESULTS

We consider two example networks, each withN=100 nodes
randomly deployed over a unit square, with two different con-
nectivity radii rc={0.25, 0.18}. The distributed schemes are
run over each of these networks using a Metropolis weight
matrix W [1]. For DCM and DCM-GS we take δ = 0.8.
The parameter vector x∈RL×1 with L= 5, M = 1, is ran-
domly generated and fixed throughout the simulation. Each
node has access to a single measurement; these are generated
as y = Hx+ n and Z = H +E, with n, E the corrupting
noises (zero-mean i.i.d. Gaussian entries with variance σ2).
We set r = 1, reflecting prior knowledge about the entries
of n and E having the same variance. The matrix H is ran-
domly generated in each run with zero-mean i.i.d. Gaussian
entries. Conditioned on H , the signal-to-noise ratio (SNR) is

SNR =
xTHTHx+tr(HTH)

N(L+ 1)σ2
≤ (1+‖x‖2)‖H‖2F

N(L+ 1)σ2
(23)

We take the upper bound (23) as the SNR in the simulations,
as it only depends on ‖H‖F and ‖x‖. The performance met-
ric considered is the normalized mean square error, defined as

NMSE{x̂(k)}= 1

N‖x‖2
N∑
i=1

E
[
‖x̂i(k)−x‖22

]
,

averaged over 500 independent realizations for each network.
Fig. 1 shows the NMSE as a function of the iteration index

k (up to K = 200 iterations) for the distributed schemes, and
for both deployments, with SNR = 10 dB. The performance
of the centralized TLS (both direct and iterative approaches)
and OLS estimators is included as a reference. Note that the
centralized CM scheme (run for 200 iterations) achieves the
same performance of the direct TLS estimator, i.e., no con-
vergence problems are observed. The larger NMSE of the
centralized OLS estimator is mainly due to its bias.

20 40 60 80 100 120 140 160 180 200

10
−1

Iteration Number

N
M

S
E

NMSE for SNR = 10 dB

TLS
OLS
CM
DSC (less)
DSC (more)
DCM (less)
DCM−GS (less)
DCM (more)
DCM−GS (more)

Fig. 1. NMSE vs. k in two different deployments with N =
100: rc = 0.18 (”less”) and 0.25 (”more”).

The total computational cost per node of the distributed
methods is the product of the number of iterations K until
convergence and the computational cost at each node. As-
suming L � M , the total cost is KDSC × O(L2) plus an
additional O(L3) EVD for DSC; KDCM × O(L3) for DCM;
and KDCM-GS × O(L) for DCM-GS. Note that the conver-
gence rate of the DCM and DCM-GS methods are the same,
i.e., KDCM-GS ≈ KDCM. As DSC converges faster than DCM
and DCM-GS, it seems to be the preferred choice whenever
the computational load of O(L2) per iteration, plus the final
EVD, are feasible at each node and the network is not highly
connected. However, for densely connected deployments and
large L, DCM-GS provides the lowest computational cost.

The three distributed schemes converge faster for the more
densely connected deployment, as could be expected. It may
seem surprising that the curves of DCM and DCM-GS for
the dense deployment remain slightly below the NMSE of the
centralized TLS estimator for k > 80. This is explained by
two facts: (i) the evolution of the NMSE need not be mono-
tonically decreasing, and (ii) the steady state has not been
reached yet for K = 200 as in Fig. 1.

6. CONCLUSIONS

We have presented novel low-complexity algorithms for dis-
tributed TLS estimation which, in contrast with previous ap-
proaches, do not impose a minimum requirement on the num-
ber of available observations per node. One of them (DSC) is
based on standard consensus and performs a single EVD upon
convergence, whereas the other (DCM) solves a linear system
at each iteration. Replacing this latter requirement by a single
Gauss-Seidel subiteration, the computational load of DCM is
significantly reduced without sacrificing performance.

7633

7. REFERENCES

[1] L. Xiao, S. Boyd, S. Lall, ”A scheme for asynchronuous
distributed sensor fusion based on average consensus,”
in Proc. 4th Int. Symp. Inf. Process. Sensor Netw., pp.
63–70, 2005.

[2] R. Olfati-Saber, J. A. Fax, R. M. Murray, ”Consen-
sus and cooperation in networked multi-agent systems,”
Proc. IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007.

[3] H. Zhu, A. Cano, G. B. Giannakis, ”Distributed
consensus-based demodulation: algorithms and error
analysis,” IEEE Trans. Wireless Commun., vol. 9, no.
6, pp. 2044–2054, Jun. 2010.

[4] H. Paul, J. Fliege, A. Dekorsky, ”In-network-
processing: distributed consensus-based linear estima-
tion,” IEEE Commun. Lett., vol. 17, no. 1, pp. 59–62,
Jan. 2013.

[5] Y. C. Eldar, A. Ben-Tal, A. Nemirovski, ”Robust mean-
squared error estimation in the presence of model uncer-
tainties,” IEEE Trans. Signal Process., vol. 53, no. 1, pp.
168–181, Jan. 2005.

[6] A. Wiesel, Y. Eldar, A. Yeredor, ”Linear regression with
Gaussian model uncertainty: Algorithms and bounds,”
IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2194–
2205, Jun. 2008.

[7] T. Söderström, ”System identification for the errors-in-
variables problem,” Trans. Inst. Meas. Control, vol. 34,
no. 7, pp. 780–792, Oct. 2012.

[8] G. H. Golub, C. Van Loan, Matrix Computations. The
Johns Hopkins University Press, 2nd ed., 1989.

[9] I. Markovsky, S. Van Huffel, ”Overview of Total Least
Squares methods,” Signal Process., vol. 87, no. 10, pp.
2283–2302, 2007.

[10] C. E. Davila, ”An efficient Total Least Squares algo-
rithm for FIR adaptive filtering,” IEEE Trans. Signal
Process., vol. 42, no. 2, pp. 268–280, Feb. 1994.

[11] E. Dall’Anese and G.B. Giannakis, ”Distributed cog-
nitive spectrum sensing via group sparse Total Least-
Squares,” Proc. IEEE CAMSAP, pp. 341–344, 2011.

[12] A. Bertrand, M. Moonen, ”Consensus-based distributed
Total Least Squares estimation in ad hoc wireless sensor
networks,” IEEE Trans. Signal Process., vol. 59, no. 5,
pp. 2320–2330, May 2011.

[13] A. Bertrand, M. Moonen, ”Low-complexity distributed
Total Least Squares estimation in ad hoc sensor net-
works,” IEEE Trans. Signal Process., vol. 60, no. 8, pp.
4321–4333, Aug. 2012.

[14] D.-Z. Feng, X.-D. Zhang, D.-X. Chang, W. X. Zheng,
”A fast recursive Total Least Squares algorithm for
adaptive FIR filtering,” IEEE Trans. Signal Process.,
vol. 52, no. 10, pp. 2729–2737, Oct. 2004.

[15] R. Arablouei, K. Doğançay, ”Linearly-constrained Re-
cursive Total Least-Squares algorithm,” IEEE Signal
Process. Lett., vol. 19, no. 12, pp. 821–824, Dec. 2012.

[16] R. Arablouei, S. Werner, K. Doğançay, ”Diffusion-
based distributed adaptive estimation utilizing gradient-
descent Total Least Squares,” in Proc. IEEE ICASSP, pp.
5308–5312, May 2013.

[17] S. M. Kay, Fundamentals of Statistical Signal Process-
ing: Estimation Theory. Englewood Cliffs, NJ: Prentice-
Hall, 1993.

[18] P. Stoica, Y. Selén, ”Cyclic minimizers, majorization
techniques, and the expectation–maximization algo-
rithm: a refresher,” IEEE Signal Process. Mag., vol. 21,
no. 1, pp. 112–114, Jan. 2004.

[19] N. Srebro, T. Jaakkola, ”Weighted low-rank approxima-
tions,” in 20th Int. Conf. Machine Learning, pp. 720–
727, AAAI Press, 2003.

[20] L. Xiao, S. Boyd, ”Fast linear iterations for distributed
averaging,” in Proc. IEEE Conf. Decision and Control,
vol. 5, pp. 4997–5002, Dec. 2003.

[21] S. Kar and J. M. F. Moura, ”Consensus + innovations
distributed inference over networks,” IEEE Signal Pro-
cess. Mag., vol. 30, no. 3, pp. 99–109, May 2013.

[22] S. Silva Pereira, R. López-Valcarce, A. Pagès-Zamora,
“A diffusion-based EM algorithm for distributed estima-
tion in unreliable sensor networks”, IEEE Signal Pro-
cess. Lett., vol. 20, pp 20, 595–598, June 2013.

7634

