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ABSTRACT

In this paper we present an approach for synchronizing the

sampling clocks of distributed microphones over a wireless

network. The proposed system uses a two stage procedure. It

first employs a two-way message exchange algorithm to esti-

mate the clock phase and frequency difference between two

nodes and then uses a gossiping algorithm to estimate a virtual

master clock, to which all sensor nodes synchronize. Simu-

lation results are presented for networks of different topology

and size, showing the effectiveness of our approach.

Index Terms— Gossip algorithm, clock synchronization,

wide area sensor networks

1. INTRODUCTION

While wide area sensor networks (WASN) have been a re-

search topic for many years [1], acoustic sensor networks

have gained increased interest only recently [2]. If audio sig-

nal processing algorithms, such as beamforming or source lo-

calization, are realized with distributed microphones, a tight

sampling rate synchronization is required. For example, if the

time difference of arrival of an impinging audio signal is to be

estimated in the presence of a sampling frequency mismatch

between two microphones, it cannot be decided whether an

observed delay change is caused by a moving speaker or is

just due to differences in the sampling frequencies.

The estimation of clock frequency offsets can either be

accomplished at the baseband audio signal processing side by

analyzing the sampled signals [3, 4] or by the exchange of

time stamps via a communication link between the sensors

[5]. In [3] the coherence function between the microphone

signals was evaluated in times of speech absence to blindly

estimate the clock frequency offset. Assuming a spatially sta-

tionary source, the frequency offset was estimated as a lin-

ear phase shift in the short-time Fourier domain in [4]. For

both approaches, the assumptions about the input signals are

quite restrictive, and it is unclear how these approaches can

be scaled to large sensor networks with many nodes.

The exchange of time stamps, which can be realized as ei-

ther a one or two-way message exchange, is a well established

method for the synchronization of communication networks

(e.g. network time protocol [6]). Chaudhari proposed a sim-

ple and robust two-way exchange algorithm [7, 8] which we

successfully used in our previous work for the synchroniza-

tion of the sampling rate of a microphone to a master clock

via a wireless link [9].

Once the clock frequency and phase offsets have been es-

timated the signals need to be adjusted for the subsequent au-

dio processing. This can be either accomplished by resam-

pling or in hardware by adjusting the oscillators of the A/D

devices. While the first can be carried out in software, the

latter does not incur any additional computational effort, how-

ever requires an adjustable frequency synthesizer. In our prior

work we adopted the latter approach by employing a Direct

Digital Synthesis (DDS) device by which the sampling rate

can be adjusted in mHz precision [9].
In this paper we extend our approach to the synchroniza-

tion of large networks comprising many sensor nodes. We

adopt a gossiping strategy [10] to achieve a network wide

clock synchronization by only local message passing between

neighboring nodes, similarly to the consensus approaches of

[11] and [12]. A distributed clock synchronization has also

been attempted in [13], where a distributed Kalman filter is

developed to estimate a virtual master clock. In contrast to

our approach it requires a network in beacon-enabled mode

with dedicated time-slots to work properly.

The paper is organized as follows: First we briefly review

the time stamp exchange protocol in Sec. 2. Then we discuss a

model for the estimation error in Sec. 3 and derive the Kalman

Filter in Sec. 4. The gossiping algorithm is described in Sec. 5

and after presenting simulation results in Sec. 6 we end up

with some conclusions drawn in Sec. 7.

2. TIME STAMP EXCHANGE

We use the two-waymessage exchange algorithm of Chaudari

[8] to estimate the clock frequency and phase offset between

two sensor nodes, see Fig. 1.
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Fig. 1. Two-way time stamp message exchange

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 7625



The exchange is initiated by the slave node by sending a

time stamp tR,k to the master. The packet arrives after a time

ξR,k (measured in the time basis of the slave) at the master

node, whose local time is t̃R,k. The master node combines the

time stamps tR,k, t̃R,k and t̃A,k in a packet and sends it back

to the slave node at time t̃A,k. After a network transmission

time of ξA,k the slave node receives the packet.

If we denote the ratio of the oscillator frequency of the

slave to that of the master by (1+ǫ), the following relationship
between the time stamps can be obtained [8]:

t̃R,k = (tR,k + ξR,k) · (1 + ǫ) + ϕ (1)

t̃A,k = (tA,k − ξA,k) · (1 + ǫ) + ϕ (2)

and similarly for the (k+1)-st time stamp exchange. Here, ϕ

is the phase offset between the two time bases. With ∆t̃+ =
(t̃R,k+1− t̃A,k),∆t̃− = (t̃R,k − t̃A,k+1) and the correspond-
ing definition for∆t+ and∆t− we can obtain an estimate for

ǫ as follows (see [8, 9] for details)

ǫ̃ =
∆t̃+ −∆t̃−

∆t+ −∆t−
− 1

≈ ǫ+
(ξR,k+1 − ξR,k) + (ξA,k − ξA,k+1)

(tR,k+1 − tR,k) + (tA,k+1 − tA,k)
. (3)

3. OBSERVATION ERROR DISTRIBUTION

The unknown transmission times ξ of eq. (3) can be modeled

as the sum of three contributions: A constant minimum de-

lay Tc, multiples of a delay Td, which are caused by medium

access (MAC) wait times, and an exponentially distributed

random component Tr, e.g., due to hardware delays. With

ξ = Tc + k · Td + Tr, eq. (3) becomes

ǫ̃ ≈ ǫ+

(

k′ · Td

2T

)

+

(

T ′

r

2T

)

=: ǫ+ vǫ. (4)

Here, k′Td summarizes the delays caused by medium access,

while T ′

r captures the exponentially distributed delays. Fur-

ther, the denominator in eq. (3) has been approximated by 2T ,
where T is the time delay between two time stamp exchanges,

see Fig. 1.

Fig. 2 displays a measured histogram of the observa-

tion error term vǫ of eq. (4). The measurement has been

obtained by connecting two sensor nodes to the same physi-

cal crystal oscillator, thus ensuring that ǫ=0, and estimating

the frequency offset by the time stamp exchange according to

eq. (3). Here, the two error terms can be clearly distinguished:

the large errors caused by the medium access are those which

are multiples of some delay Td, while the random component

T ′

r is much smaller and causes the (hardly visible) widening

of the peaks.

The error histogram can be approximated by a Gaussian

mixture model (GMM) p(vǫ) =
∑M−1

m=0 γmN (vǫ;µm,ǫ, σ
2
ǫ ),

where the µm,ǫ model the medium access delays (large-scale

errors) and the variations around the µm,ǫ of variance σ
2
ǫ are

caused by T ′

r (small-scale errors). Indeed, the sum of four

exponentially distributed random variables, two of them with
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Fig. 2. Histogram of observation error vǫ (obtained from ap-

proximately 6 hours of data) and GMM approximation

a negative sign, can be well approximated by a zero-mean

Gaussian.

From eq. (4) we can conclude that increasing the time T

between two time stamp exchanges reduces both the means

µm,ǫ and the variance σ2
ǫ of the observation error. Of course,

T cannot be made arbitrarily large, since then one would not

be able to track the fluctuations in ǫ.

Note that an estimate ϕ̃ for ϕ can also be derived from

eq. (1) and eq. (2) [8]. Its measurement error has a similar

GMM-like shape as the one above, and its mixture specific

variance is denoted by σ2
ϕ in the following.

4. REDUCTION OF OBSERVATION ERROR

In the following we show how the estimates ǫ̃ and ϕ̃ obtained

from the time stamp exchange protocol can be improved. Due

to the nature of the error term vǫ, the large-scale errors µm,ǫ

need special attention, while the small-scale errors are taken

care of by a Kalman filter.

4.1. Kalman Filter

The task of the Kalman filter is to track the frequency offset

ǫ(n), its temporal drift∆ǫ(n), and the phase offsetϕ(n) using
the state vector x(n) = [ϕ(n), ǫ(n),∆ǫ(n)]T . The state and
measurement equations are given by

x(n+ 1) = F · x(n) +G · vS (5)

z(n) = H
T · x(n) + v (6)

with the matrices

F =





1 T ·f0 0
0 1 T

0 0 1



 G =





1 0 0
0 1 0
0 0 1



 H =





1 0
0 1
0 0





E[vSv
T
S ] =





0 0 0
0 0 0
0 0 σ2

∆ǫ



 E[vvT ] =

(

σ2
ϕ 0
0 σ2

ǫ

)

(7)

where f0 is the targeted frequency and σ2
∆ǫ models the fluc-

tuations of the crystal oscillator, e.g., due to environmental

effects. The input to the Kalman filter are the estimates of the

message exchange protocol: z(n) = (z1(n) z2(n))
T , where

z1(n) = ϕ̃(n) and z2(n) = ǫ̃(n).
If we assume that the prediction of the Kalman filter

ǫ̂(n|n− 1) is close to the true value ǫ(n):

|ǫ̂(n|n− 1)− ǫ(n)| ≪
1

2

Td

2T
, (8)
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then the large-scale observation error can be uniquely deter-

mined by finding that mixture component that is closest to the

prediction

m̂ = argmin
m

|ǫ̂(n|n− 1)− (ǫ̃(n)− µm,ǫ)| (9)

and removed by subtracting the mean of the identified mix-

ture component from the observation: z′2(n) = z2(n)−µm̂,ǫ.

Then z′2(n) is presented to the Kalman filter instead of z2(n).
The analogue procedure is also applied to the phase offset ob-

servation z1(n).

4.2. Initialization

In the beginning the Kalman filter will not deliver sufficiently

exact estimates to identify the large-scale error µm,ǫ. If this

error term is wrongly identified the Kalman filter may get

locked at a poor estimate which differs from the true value

by a multiple of the GMM inter mean distance. However, it

is easy to detect this situation by the following two criteria.

Firstly, it can be observed that, although the deviation from

the master clock is small, the offset keeps increasing rapidly

over time. Secondly, the mean of all observations is not zero.

These two criteria are checked constantly, not only during

initialization, and if they indicate a false lock, the Kalman

filter estimate is corrected by the detected mean error.

5. GOSSIPING ALGORITHM

So far we have considered the synchronization among two

nodes. However, an acoustic sensor network may consist of

many more nodes. To synchronize all nodes to a common

sampling frequency we will employ a gossiping strategy [10],

where nodes only exchange messages between their immedi-

ate neighbors with the goal to synchronize to a virtual master

node whose clock frequency is given by the average of the

frequencies of the nodes.

This approach has several advantages compared to syn-

chronizing to a predefined physical master node. Firstly,

it avoids the problem of introducing a single point of fail-

ure. Secondly, on average all nodes only have to adapt their

sampling rate by a small factor. Thirdly, network topology

changes, e.g., nodes entering or leaving the network, do not

interrupt the synchronization process. However, exchanging

information only between neighboring nodes will increase

the time until a steady state is reached.

5.1. Information exchange

The task of the gossiping algorithm is to iteratively estimate,

for each node, the sampling rate deviation to a virtual mas-

ter node, whose sampling rate equals the average sampling

rate of all nodes of the network, by only local information ex-

change between neighboring nodes. Let G = (N , C) denote
the graph with N = {N1, . . .Nk, . . . NP } being the set of

nodes and C the set of edges between the nodes. Now con-

sider the message exchange of some node Nk with its neigh-

bors (see Fig. 3).

Virtual Master

Nk
Nn

Nm

Nl

ǫkn ǫkl

ǫkm
ǫlv

ǫkv

Fig. 3. Example network topology with highlighted node Nk

and virtual master node.

After conducting the time stamp exchange protocol node

Nk knows the frequency deviations {ǫkl, ǫkm, ǫkn} to its

neighbor nodes. From the last iteration of the gossip al-

gorithm it further knows the deviations {ǫlv, ǫmv, ǫnv} of

the neighboring nodes from the virtual master clock. Note,

that the deviation towards the virtual master node equals the

value the node will change its oscillator frequency during the

adjustment phase (after the gossiping) since the goal is to

synchronize all nodes to the virtual master clock.

For the next gossiping iteration the node has to select an

adjacent node to exchange data with. We did exhaustive sim-

ulations of several variants of gossip algorithms (e.g. [14])

to determine the optimal decision rule for choosing which

neighboring node to exchange data with. The fastest syn-

chronization was achieved by selecting the neighbor with the

largest deviation to be expected after performing the sam-

pling rate adjustment, i.e., that node Nα ∈ Nk, for which

(ǫkα − ǫkv + ǫαv) assumes the largest value, whereNk is the

set of nodes adjacent to node Nk. For the example of Fig. 3

assume that node Nl has been selected. Node Nk then sends

the information [ǫkl, ǫkv] to this node. NodeNl computes the

average

ǫlk =

(

ǫlk

2
+
−ǫkl
2

)

(10)

and calculates the deviation after adjustment with

ǫ
(A)
lk = (ǫlk − ǫlv + ǫkv) . (11)

Subsequently, the deviation towards the virtual master (i.e.,

the adjustment value for the clock frequency synthesizer of

nodeNl) is updated to

ǫlv ← ǫlv +
ǫ
(A)
lk

2
(12)

and the values
[

ǫ
(A)
lk , ǫlv

]

are transmitted to node k, such that

it can update ǫkv .

This procedure is carried out for all nodes of the network

and iterated until convergence or until a predefined number of

iterations is reached.

The same gossiping strategy is also employed for the

phase offset estimates, such that in the end of the gossiping

iterations all nodes have estimates of their frequency devi-

ation ǫkv and their phase offset ϕkv to the virtual master

node.

Then nodes Nk, k=1,. . . P, will adjust their oscillator fre-
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quencies according to ǫkv . Note that a controller is employed

to compute the oscillator adjustment from ǫlv and ϕlv . The

discussion of the controller is, however, beyond the scope of

this paper.

6. SIMULATION RESULTS

In prior work a sensor node has been realized in hardware to

test the clock synchronization to a master clock via a wireless

communication link [9]. However, the test of the gossiping al-

gorithm for large networks could only be carried out by simu-

lation. Wherever possible, the parameters used in the simula-

tions had been derived from measurements on our hardware.

The time between two message exchanges (tA,k+1 − tA,k)

is set to T=10 s, which is also the available processing time

for the gossiping. Each node tries to access the medium ap-

proximately every 100ms, which equals a maximum of 100
synchronization attempts per node shared across the set of

connections the node has. Since the medium access control

can only provide one node at a time the privilege to use the

medium and the time basis of the nodes are not synchronized,

this kind of communication is more like an asynchronous time

model than a synchronous one.

Figure 4 illustrates the synchronization of a network with

25 nodes in terms of the clock frequency deviation ǫ from

the master, measured in ppm. The network topology has

been generated at random with a node having on average

three neighbors. Starting with random deviations between

±50ppm our algorithm synchronizes the network within

3min such that the RMS deviation to the master equals

0.04ppm (maximum deviation ≤ 0.19ppm).

The top figure of Fig. 5 shows the steady-state RMS error

of the phase where for each network size (in terms of nodes)

100 randomly generated topologies have been simulated. The

RMS error is expressed as the percentage of a sampling in-

terval. The red curve indicates the average over the different

topologies, and the bars show the largest and smallest value,

respectively. Clearly, the synchronization performance de-

pends on the network topology: A network with clusters of

nodes and only few edges between the clusters will needmore

time for settling on a common sampling rate than a network

without bottleneck nodes.

The bottom figure of Fig. 5 displays the largest phase er-

ror observed during 60min of simulation time, averaged over

the 100 randomly generated network topologies for different

0 0.5 1 1.5 2 2.5 3 3.5

−40

−20

0

20

40

time [min]

D
e
v
ia

ti
o
n
 f
ro

m
 m

a
s
te

r 
[p

p
m

]

20 40 60 80 100

−0.4

−0.2

0

0.2

0.4

Fig. 4. Development of the frequency deviation ǫ of 25 sensor
nodes to the virtual master node over time

Maximum phase error [%] 0 5 10 35 50 60

RMS Position error [m] 0.06 0.06 0.07 0.10 0.19 0.42

Table 1. Influence of offset errors on position estimates.

numbers of nodes. The bars indicate the values for the best

and worst performing topology, respectively. Overall, Fig. 5

seems to indicate that the network topology has a larger im-

pact on the synchronization performance than the network

size.
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Fig. 5. Simulation results of random graphs in terms of the

RMS phase error (top) and maximum phase error (bottom)

6.1. Impact on position estimation

We simulated the microphone signals of a 5-element circu-

lar microphone array of 2m diameter, which are caused by

a moving speaker in a reverberation-free room of size 10 ×
10m. The speaker position was estimated with an interpo-

lated GCC-PHAT approach [15] with a global coherence field

analysis [16] (grid distance 1 cm). In Tab. 6.1 the root-mean-

square positioning error is given for different synchronization

precisions. For example, if the maximum phase error remains

below 35 % of a sampling interval the sampling time jitter

causes a positioning error of 10 cm. According to Fig. 5 the

proposed synchronization scheme is able to keep the maxi-

mum phase offset below 35 % on average for networks com-

prising as many as 80 nodes.

7. CONCLUSIONS & CONTRIBUTIONS

In this paper we extended our ideas about synchronizing two

acoustic sensor nodes by time stamp exchange over a wire-

less link [9] towards the application in large sensor networks.

Compared to [9] an improved Kalman filter is derived for

clock phase and frequency offset estimation between two sen-

sor nodes. Further, a gossiping algorithm is presented to syn-

chronize a sensor network to a virtual master clock. Networks

of different size and topology have been simulated to evaluate

the synchronization performance. Even for networks as large

as 100 nodes the RMS clock phase error could be kept below

6% of a sampling period.
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