
Listener, R

Rz

x

nRr


Sources

Loudspeaker, n

mz
mnr


mS

FAST AND EFFICIENT REAL-TIME GPU BASED IMPLEMENTATION OF WAVE FIELD 

SYNTHESIS 

 

Rishabh Ranjan and Woon-Seng Gan 

 

School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore 

{rishabh001, ewsgan}@ntu.edu.sg 
 

ABSTRACT 

 

Wave Field Synthesis (WFS) aims to replicate true sound 

field in an extended listening area with the help of 

loudspeaker arrays. WFS practical setups are heavily 

computational, as they need to drive many loudspeakers to 

accurately render multiple virtual sources. Thus, performance 

bottleneck occurs due to the sequential implementation on 

PCs with few cores. In addition, real-time spatial audio 

reproduction systems like WFS are subjected to hard real-

time constraints, limiting system throughput and require 

cascading of several PCs to improve performance. In this 

paper, a fast and efficient graphics processing unit (GPU) 

based implementation of WFS is proposed to enhance the 

system throughput by extracting maximum data parallelism in 

the algorithm. The proposed method, implemented on NVidia 

C2075 GPU, uses block based partitioning approach to 

achieve peak system throughput of 1,400 Msamples per 

second, while rendering up to 200 real-time sound sources.  
 

Index Terms— WFS, GPU, Parallel processing 
 

1. INTRODUCTION 
 

Wave Field Synthesis (WFS) is a spatial audio reproduction 

technique capable of reproducing high fidelity sound in large 

listening area with the help of loudspeaker arrays [1]. 

Listeners get to experience realistic sound scene as they are 

free to move in the listening area and virtual sources are 

localized as close as possible to their true positions. In 

practice, such high fidelity systems require many driving 

units, while rendering multiple virtual sources, making WFS 

a heavy computationally complex system. Commercially 

viable solutions from SonicEmotion [2] and IOSONO [3] can 

render up to 64 real-time sources for 24 and 32 driving units, 

respectively. Furthermore, before hardware implementation 

can be realized, the synthesized sound field quality needs to 

be analyzed across the entire listening area. Thus, two 

processing blocks, namely, synthesized signal block and 

sound field synthesis block are added to the system, which 

can be used for real-time analysis of a WFS set up. 

Collectively, we call such system: a three-fold WFS set up. 

Overall, WFS is a highly parallel data intensive application 

but suffers from limited resource problem and low 

throughputs when implemented on today’s multi-core PC 

platforms. 

With the advent of graphics processing units (GPU), 

maximum resource utilization can be achieved using parallel 

computing architecture. Recently, modern GPUs like 

GTX590, C2075, K10 etc. have hundreds to thousands of 

processing cores, which can handle massively parallel and 

computationally intensive applications such as WFS. 

Essentially, algorithms written for small-scale multicore PCs 

need to be sufficiently parallelized and adapted for multi-

threading architecture to take full advantage of today’s GPUs. 

Additionally, in real-time spatial audio applications, GPU 

must process the audio data within a fixed time interval, while 

also taking account of the data transfer overheads. This makes 

parallelization the most critical task for performance.  

In this paper, we present a generic real-time 

implementation of three-fold WFS set up on GPU using 

CUDA [4] technology with MATLAB [5]. Low level parallel 

programming language, CUDA is used to achieve peak 

performance by giving complete control of GPU architecture 

to the user. Concretely, the main objective of this work is to 

develop a fast real-time implementation of WFS set up by 

efficiently mapping the massive data parallelism into WFS 

and thereby, taking advantage of running thousands of threads 

in parallel. Results show that peak system throughput of 

1,400 Msamples per second (MSPS) can be achieved with 20 

folds improvement over CPU based implementation. 

This paper is organized as follows. Related work is 

mentioned in Section 2. Section 3 briefly outlines the 

overview of WFS governing equations followed by block 

wise processing of real-time WFS set up in Section 4. Section 

5 further examines the optimization techniques and overhead 

reduction methods in GPU. Section 6 shows the experimental 

results with key findings reported in the concluding Section 7. 

Figure 1 Geometry for WFS equations 
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2. RELATED WORK 

Due to the advent of more powerful GPU, we are seeing new 

works related to the real-time spatial audio processing 

applications like GPU on WFS platforms. Theodoropoulos et 

al. [6, 7] implemented WFS on different multicore platforms 

including GPU with the focus on architectural perspectives of 

these platforms. They reported speed up of around 10-20 

times on GPU against Intel core 2 duo PC and estimated up to 

64 real-time sources rendering for 96 loudspeakers.  In [8], 

real time implementation of WFS was proposed on GPU and 

CUDA using NU-Tech framework [9] with peak speed up 

achieved up to around 4 times, although there is no mention 

of number of real-time source rendering. In [10], authors 

implemented WFS and a room compensation block with 

added computational complexity on three different GPU 

platforms. Their implementation achieved real-time rendering 

up to 50, 80 and 300 sources for Tesla, Fermi and Kepler 

architecture, respectively when room compensation was not 

applied for 96 loudspeakers. In contrast to above works, our 

implementation is based on hybrid time-frequency approach, 

which has lesser computational complexity. In addition, two 

processing blocks are also implemented in GPU for sound 

field analysis. System throughput is used as a better measure 

of system performance instead of speed up. In the end to end 

comparison with [10] and our Fermi GPU, we obtained 

around 4 fold improvement in number of real-time sources for 

96 driving units. 

3. WFS OVERVIEW 
 

WFS is a multichannel spatial audio reproduction system, 

which works on the principle of natural wave propagation as 

derived from Huygens principle by Berkhout [11, 12]. WFS 

driving signals (loudspeaker signals) are derived from 

discrete 2D Rayleigh integral using stationary phase 

approximation [12-14] as 
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Each driving signal is the total contribution from delayed 

and weighted samples of all the pre-filtered source signals as 

shown in Figure 1.      is usually taken as reference listener 

distance in the center of the listener area for the calculation of 

driving signals. Synthesized sound pressure at any listener 

point, R and any time, t is given using driving signals [12, 13] 

as shown in (2) 
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where d (•) is the inverse Fourier transform of the driving 

signal in (1). Clearly, synthesized sound pressure is given by 

contributions from all the driving signals summed up at the 

listener position. 
 

4. REAL-TIME IMPLEMENTATION 
 

The three-fold WFS spatial reproduction set up is shown in 

Figure 2. Using a linear array of loudspeakers, driving signal 

(block PB1)  for each loudspeaker is governed by (1) and 

subsequently, used in synthesis function (2) altogether for 

processing blocks PB2 and PB3, as shown in Figure 2. 

As stated earlier, the processing blocks PB2 and PB3 can 

be used to assess synthesized sound field quality for different 

kinds of WFS set up. PB2 computes the virtually synthesized 

binaural signals at Ls listener positions for real-time playback 

over headphones. PB3 synthesizes snapshots of the sound 

field in the entire listening area (         ) for different 

test signals.           represents the number of sample 

points in the entire listener area. These snapshots can also be 

used for analysis of several artifacts, like spatial aliasing, 

truncation effects and amplitude errors. 

For real-time processing, one frame of audio data must be 

processed within the         (frame size/sampling frequency).  

At the same time, we should aim to maximize the system 

throughput by processing more data within        . The real 

time implementation of WFS set up is based on overlap-save 

technique with 50 % overlap using frame size of M samples 

and M previous samples. As shown in Figure 2, driving signal 

block (PB1) is divided into three stages, namely, (a) pre-

filtering for multiple sources, (b) individual driving signals 

due to all sources at each loudspeaker, and, (c) compute 

driving signals using reduction sum of output matrix at stage 

(b). Real-time filtering using block convolution is generally 

faster in frequency domain [10]. Therefore, pre-filtering is 

implemented in frequency domain, while the rest of the stages 

have been implemented in spatio-temporal domain. Recent 

contributions [15, 16] have also shown that real-time filtering 

of multiple data can be processed concurrently on GPU. Pre-

filtering is carried out by element-wise complex 

multiplications of 2M-FFT transformed multiple source data. 

Table 1 summarizes the computational complexity of 

different computations stages in PB1. Clearly, time-frequency 

approach seems to have the lowest complexity for larger 

values of virtual sources (Ns) and speakers (L). Both 

Figure 2 Real-time WFS processing with processing blocks (PB1, PB2 and PB3) 
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Table 2 Average execution times for WFS processing blocks 
 (Ns =1, L = 161, M = 512, Ls = 1, dimx = dimz = 256) 

Platform PB1 (msec) PB2 (msec) PB3 (msec) 

CPU 1.94 2.08 745.5 

CPU+GPU 1.56 0.37 2.7 

 
 

Table 1 Computational Complexity of different computation 

stages in PB1 (MAD: Multiply/Addition; ADD: Addition) 

Stage 
time-

frequency 
time [6,7] frequency [8,10] 

FFT (a)       -       

MAD (a)                          

IFFT (a)       - - 

MAD (b)                        

ADD (c)               2        

IFFT - -      

 frequency and time domain approaches have high arithmetic 

density due to complex arithmetic operations and circular 

convolutions, respectively, resulting in higher complexity. 

Blocks PB2 and PB3 are also implemented in time-domain 

using weighted and delayed contribution from driving signals 

at listener positions with computational complexity     
    and             respectively.  

5. GPU IMPLEMENTATION 
 

Most of the audio processing is done in GPU using low level 

CUDA programming language along with MATLAB as host 

environment, controlling the GPU execution. Recently, 

MATLAB has added the support for GPU computing to its 

parallel computing toolbox (PCT) to take advantage of the 

parallel computing from MATLAB environment [17]. 

MATLAB along with the CUDA kernels [18] serves as a 

useful tool for the fast development of existing MATLAB 

applications onto GPU using custom CUDA functions, as 

well as overloaded MATLAB functions for GPU.   

The datasets to be computed are carefully partitioned into 

multiple contiguous blocks to take advantage of the data reuse 

using the on-chip cache and exploit coalesced memory access 

as much as possible. WFS algorithm is also segregated into 

parallel functions to exploit maximum data parallelism. Other 

CPU-GPU optimizations include shared memory, constant 

memory, data reorganizations, and overlapped executions are 

also taken into account to further speed up the processing 

time. We will now describe the implementation of each 

parallel task on GPU along with the optimization choices 

made for the best performance. 
 

5.1. Pre-filtering of multiple sources 
 

Computational complexity of this task is in  (     ), 
where Ns is the number of sources. A total of       
threads are launched with thread block size of 256 threads.  

Each thread computes one complex multiplication for a single 

source sample with the corresponding filter coefficient. 

Shared memory is used to synchronize the common filter 

coefficients within a thread block. Both MATLAB built-in 

overloaded FFT function for GPU, as well as NVIDIA 

CUFFT library [4] are considered, since both can perform 

frequency transformations for multiple sources concurrently. 
 

5.2. Driving signals computation 
 

Driving signals are computed in time domain after taking 

inverse Fourier transform and discarding first invalid M 

samples from output at stage (a). The current M pre-filtered 

samples are then merged with previous 2,048 samples to form 

pre-filtered source buffers (to access delayed samples of 

driving signals). As mentioned in Section 4, driving signals 

computation is further divided into two stages to extract the 

maximum data parallelism. First, individual driving signals 

are computed as three-dimensional output matrix of size 

(      ). Kernel is launched with         threads 

with two dimensional thread blocks of size     threads, 

corresponding to   samples of   driving signals. A thread 

block computes these     samples with each thread 

computing one sample. Weight and delay values are 

computed once for each speaker position and are reused using 

shared memory within a thread block. Pre-filtered source 

samples are also transferred to shared memory and shared 

across a thread block to further reduce the memory latency. 

Finally, driving signals for each loudspeaker are computed 

as separate CUDA kernel using reduction sum across the third 

dimension of the output matrix at stage (b). Since reduction 

sum is a sequential operation, kernel with      threads will 

result in very low throughput with each thread performing    
serial additions. We parallelize the reduction sum using 

binary tree based parallel reduction [19], where partial sums 

are computed in parallel and synchronized within thread 

block. Kernel is thus, launched with one dimensional thread 

block of size Ns and grid size of     thread blocks. Each 

thread block computes one sample of a driving signal and 

result is written back to global memory. 

5.3. Synthesized signals and Sound field synthesis 

computation 
 

Similar to the driving signals computation, processing blocks 

PB2 and PB3 are implemented in GPU by launching two 

separate kernels, one for computations of weighted and 

delayed driving signals and other for the parallel reduction 

sum (see Section 5.2). First kernel is launched with     
    threads and             threads respectively, for 

PB2 and PB3. For second kernel, each thread block (of size L 

threads) computes one sample of synthesized signal at a given 

listener position using parallel reduction sum for both the 

processing blocks.  

 Other optimizations include constant memory to 

store speaker and source positions, overlapped executions on 

host side for data transfer as well as data rearrangements. 
 

6. RESULTS 
 

Our processing platform consists of the Intel quad core i7 

processor as CPU, and Fermi architecture based C2075 as 

448-core GPU with 14 simultaneous multiprocessors (SMs). 

We analyze the performance of the real-time WFS set up 

based on implementation aspects, like latency and throughput 

of the system as well as algorithmic complexity. It should be 

noted that the CPU implementation inherently takes 
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Figure 3 Impact of major optimization techniques over 

GPU un-optimized implementation 

(Ns =100, L = 161, M = 512, Ls = 1) 
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Figure 4 Average Execution times and Peak throughput of 

overall system (PB1 + PB2) 

advantage of the multicore host architecture and 

multithreading by MATLAB inbuilt functions. 

Number of speakers and sound sources are the two main 

parameters, which control the real-time performance of the 

WFS driving function block both in terms of efficiency and 

behavior. In order to create a realistic and practiced WFS 

system, multiple sources rendering over huge loudspeaker 

array is required. But, a real-time implementation poses 

constraints on the number of loudspeakers and sources, and 

often there is a tradeoff between performance and behavior of 

the system. Fewer loudspeakers can result in spatial aliasing, 

while limited number of virtual sources may not give an 

enriching sound experience to the listeners. Since modern 

GPUs are capable of running thousands of threads in parallel 

by exploiting massive data parallelism inherent in an 

application, real-time performance can be improved 

significantly, while at the same time achieving desired sound 

field quality.  

Table 2 shows the average execution time per frame for 

the three processing blocks rendering a single source. 

Execution times reported for GPU is inclusive of the data 

transfer between host and device. Upon dividing the reported 

execution time by the number of samples processed for each 

block, PB3 is clearly identified as the slowest block. It 

executes 275 times fast after GPU optimization, which is 

mainly due to the inherent massive data parallelism involved 

in the computation of synthesized signals. On the other hand, 

PB1 is the slowest block after GPU optimization given the 

lack of much parallelism in single source rendering. For 

driving function block, the number of samples processed is L 

× M × Ns while, for the other two blocks, it is same as their 

complexity.  GPU efficiency can be considerably improved 

when there are many sources to be rendered by extracting 

more data parallelism. However, increasing the workload on 

GPU will also incur high global memory overhead. As 

discussed in Section 5, several optimization techniques can be 

applied to speed up the system. Figure 3 shows the impact of 

major optimizations on system performance. As shown, after 

shared memory optimization, kernel for stage (b) executes 

twice as fast as one without any optimization. It is also shown 

that how the different choices of thread block configuration 

affect the execution time. As shown, there is a trade-off 

between choices of l and m, with optimum thread block 

configuration found to be      for a fixed block size of 256 

threads. This is mainly due to the extra memory overheads or 

more arithmetic operations at the two extremes choices of l 

and m. Similarly, optimum thread block sizes for other 

kernels have been found. From the pie chart shown in Figure 

3, shared memory with optimum thread block size has most 

of the impact in improving the GPU performance with 59% 

share for the driving function block PB1. However, for block 

PB2, there is only 13% improvement over non-optimized 

GPU implementation. This is mainly due to the fewer data 

parallelism present in PB2 as compared to PB1. Another 

significant effect is due to the parallel reduction sum 

especially, if CUDA kernel is launched with thousands of 

threads. Finally, overlapped execution, which was used to 

perform some of the data transfers and host processes 

simultaneously with kernel execution, also resulted in 6% 

latency savings.  
Figure 4 shows the average execution times per frame and 

peak throughput of the overall system for blocks PB1 and 

PB2. As shown, processing time must be less than         for 

WFS set up to perform in real-time (Figure 4). Thus, GPU 

can render up to 1,000 real-time sources for 9 speakers or 200 

real-time sources for 161 speakers. At the same time one can 

also listen to the synthesized signals in real-time. System 

throughput is calculated as number of sampled processed per 

unit time. As shown in Figure 4, optimized GPU 

implementation can have peak system throughput of 1,400 

MSPS almost twice of the un-optimized GPU 

implementations and 20 times of the CPU based 

implementation. It is also important to note that throughput 

can be substantially improved by increasing the GPU 

workload and hence, exploiting the maximum data 

parallelism in GPU.  
7. CONCLUSION 

 

In this paper, we presented a fast and efficient GPU 

implementation for a real-time wave field synthesis system. 

We have successfully accelerated the overall WFS set up with 

peak throughput of 1,400 MSPS using several GPU 

optimization techniques. We achieved 20-fold improvement 

over CPU based implementation, while up to 200 sources can 

be rendered in real-time with 161 loudspeaker array. In 

addition, for high-end GPUs running thousands of parallel 

threads, we are able to synthesize WFS signals at any listener 

positions in real-time with as many sources. One of the main 

features of this work is that all the audio processing is done in 

GPU, while CPU is freed for other independent tasks like IO 

buffering or overlapped data transfers. Among the several 

optimization techniques, shared memory provides us the most 

significant performance improvement.  
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