
Listener, R

Rz

x

nRr

Sources

Loudspeaker, n

mz
mnr

mS

FAST AND EFFICIENT REAL-TIME GPU BASED IMPLEMENTATION OF WAVE FIELD

SYNTHESIS

Rishabh Ranjan and Woon-Seng Gan

School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore

{rishabh001, ewsgan}@ntu.edu.sg

ABSTRACT

Wave Field Synthesis (WFS) aims to replicate true sound

field in an extended listening area with the help of

loudspeaker arrays. WFS practical setups are heavily

computational, as they need to drive many loudspeakers to

accurately render multiple virtual sources. Thus, performance

bottleneck occurs due to the sequential implementation on

PCs with few cores. In addition, real-time spatial audio

reproduction systems like WFS are subjected to hard real-

time constraints, limiting system throughput and require

cascading of several PCs to improve performance. In this

paper, a fast and efficient graphics processing unit (GPU)

based implementation of WFS is proposed to enhance the

system throughput by extracting maximum data parallelism in

the algorithm. The proposed method, implemented on NVidia

C2075 GPU, uses block based partitioning approach to

achieve peak system throughput of 1,400 Msamples per

second, while rendering up to 200 real-time sound sources.

Index Terms— WFS, GPU, Parallel processing

1. INTRODUCTION

Wave Field Synthesis (WFS) is a spatial audio reproduction

technique capable of reproducing high fidelity sound in large

listening area with the help of loudspeaker arrays [1].

Listeners get to experience realistic sound scene as they are

free to move in the listening area and virtual sources are

localized as close as possible to their true positions. In

practice, such high fidelity systems require many driving

units, while rendering multiple virtual sources, making WFS

a heavy computationally complex system. Commercially

viable solutions from SonicEmotion [2] and IOSONO [3] can

render up to 64 real-time sources for 24 and 32 driving units,

respectively. Furthermore, before hardware implementation

can be realized, the synthesized sound field quality needs to

be analyzed across the entire listening area. Thus, two

processing blocks, namely, synthesized signal block and

sound field synthesis block are added to the system, which

can be used for real-time analysis of a WFS set up.

Collectively, we call such system: a three-fold WFS set up.

Overall, WFS is a highly parallel data intensive application

but suffers from limited resource problem and low

throughputs when implemented on today’s multi-core PC

platforms.

With the advent of graphics processing units (GPU),

maximum resource utilization can be achieved using parallel

computing architecture. Recently, modern GPUs like

GTX590, C2075, K10 etc. have hundreds to thousands of

processing cores, which can handle massively parallel and

computationally intensive applications such as WFS.

Essentially, algorithms written for small-scale multicore PCs

need to be sufficiently parallelized and adapted for multi-

threading architecture to take full advantage of today’s GPUs.

Additionally, in real-time spatial audio applications, GPU

must process the audio data within a fixed time interval, while

also taking account of the data transfer overheads. This makes

parallelization the most critical task for performance.

In this paper, we present a generic real-time

implementation of three-fold WFS set up on GPU using

CUDA [4] technology with MATLAB [5]. Low level parallel

programming language, CUDA is used to achieve peak

performance by giving complete control of GPU architecture

to the user. Concretely, the main objective of this work is to

develop a fast real-time implementation of WFS set up by

efficiently mapping the massive data parallelism into WFS

and thereby, taking advantage of running thousands of threads

in parallel. Results show that peak system throughput of

1,400 Msamples per second (MSPS) can be achieved with 20

folds improvement over CPU based implementation.

This paper is organized as follows. Related work is

mentioned in Section 2. Section 3 briefly outlines the

overview of WFS governing equations followed by block

wise processing of real-time WFS set up in Section 4. Section

5 further examines the optimization techniques and overhead

reduction methods in GPU. Section 6 shows the experimental

results with key findings reported in the concluding Section 7.

Figure 1 Geometry for WFS equations

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 7600

Block wise
processing, Pre-

filtering

WFS Driving Functions
Source 1

Sound field synthesis
for entire listener

area

Multiple
Source Input

Pairs of WFS
synthesized signal for
each listener position

WFS Driving Functions
Source j

WFS Driving Functions
Source Ns

+

Ns Sources

WFS Driving
Signals

L Speakers

Ls Positions

Listener Area

PB1 PB2

PB3

(a) (b) (c)

L Speakers

2. RELATED WORK

Due to the advent of more powerful GPU, we are seeing new

works related to the real-time spatial audio processing

applications like GPU on WFS platforms. Theodoropoulos et

al. [6, 7] implemented WFS on different multicore platforms

including GPU with the focus on architectural perspectives of

these platforms. They reported speed up of around 10-20

times on GPU against Intel core 2 duo PC and estimated up to

64 real-time sources rendering for 96 loudspeakers. In [8],

real time implementation of WFS was proposed on GPU and

CUDA using NU-Tech framework [9] with peak speed up

achieved up to around 4 times, although there is no mention

of number of real-time source rendering. In [10], authors

implemented WFS and a room compensation block with

added computational complexity on three different GPU

platforms. Their implementation achieved real-time rendering

up to 50, 80 and 300 sources for Tesla, Fermi and Kepler

architecture, respectively when room compensation was not

applied for 96 loudspeakers. In contrast to above works, our

implementation is based on hybrid time-frequency approach,

which has lesser computational complexity. In addition, two

processing blocks are also implemented in GPU for sound

field analysis. System throughput is used as a better measure

of system performance instead of speed up. In the end to end

comparison with [10] and our Fermi GPU, we obtained

around 4 fold improvement in number of real-time sources for

96 driving units.

3. WFS OVERVIEW

WFS is a multichannel spatial audio reproduction system,

which works on the principle of natural wave propagation as

derived from Huygens principle by Berkhout [11, 12]. WFS

driving signals (loudspeaker signals) are derived from

discrete 2D Rayleigh integral using stationary phase

approximation [12-14] as

 () ∑ ()

√

 √

| ⃗⃗ ⃗⃗ ⃗⃗ |

| ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |

√| ⃗⃗ ⃗⃗ ⃗⃗ |
 (1)

Each driving signal is the total contribution from delayed

and weighted samples of all the pre-filtered source signals as

shown in Figure 1. is usually taken as reference listener

distance in the center of the listener area for the calculation of

driving signals. Synthesized sound pressure at any listener

point, R and any time, t is given using driving signals [12, 13]

as shown in (2)

 ()

 ∑

| ⃗⃗⃗⃗⃗⃗ |

 (
| ⃗⃗⃗⃗⃗⃗ |

) (2)

where d (•) is the inverse Fourier transform of the driving

signal in (1). Clearly, synthesized sound pressure is given by

contributions from all the driving signals summed up at the

listener position.

4. REAL-TIME IMPLEMENTATION

The three-fold WFS spatial reproduction set up is shown in

Figure 2. Using a linear array of loudspeakers, driving signal

(block PB1) for each loudspeaker is governed by (1) and

subsequently, used in synthesis function (2) altogether for

processing blocks PB2 and PB3, as shown in Figure 2.

As stated earlier, the processing blocks PB2 and PB3 can

be used to assess synthesized sound field quality for different

kinds of WFS set up. PB2 computes the virtually synthesized

binaural signals at Ls listener positions for real-time playback

over headphones. PB3 synthesizes snapshots of the sound

field in the entire listening area () for different

test signals. represents the number of sample

points in the entire listener area. These snapshots can also be

used for analysis of several artifacts, like spatial aliasing,

truncation effects and amplitude errors.

For real-time processing, one frame of audio data must be

processed within the (frame size/sampling frequency).

At the same time, we should aim to maximize the system

throughput by processing more data within . The real

time implementation of WFS set up is based on overlap-save

technique with 50 % overlap using frame size of M samples

and M previous samples. As shown in Figure 2, driving signal

block (PB1) is divided into three stages, namely, (a) pre-

filtering for multiple sources, (b) individual driving signals

due to all sources at each loudspeaker, and, (c) compute

driving signals using reduction sum of output matrix at stage

(b). Real-time filtering using block convolution is generally

faster in frequency domain [10]. Therefore, pre-filtering is

implemented in frequency domain, while the rest of the stages

have been implemented in spatio-temporal domain. Recent

contributions [15, 16] have also shown that real-time filtering

of multiple data can be processed concurrently on GPU. Pre-

filtering is carried out by element-wise complex

multiplications of 2M-FFT transformed multiple source data.

Table 1 summarizes the computational complexity of

different computations stages in PB1. Clearly, time-frequency

approach seems to have the lowest complexity for larger

values of virtual sources (Ns) and speakers (L). Both

Figure 2 Real-time WFS processing with processing blocks (PB1, PB2 and PB3)

7601

Table 2 Average execution times for WFS processing blocks
 (Ns =1, L = 161, M = 512, Ls = 1, dimx = dimz = 256)

Platform PB1 (msec) PB2 (msec) PB3 (msec)

CPU 1.94 2.08 745.5

CPU+GPU 1.56 0.37 2.7

Table 1 Computational Complexity of different computation

stages in PB1 (MAD: Multiply/Addition; ADD: Addition)

Stage
time-

frequency
time [6,7] frequency [8,10]

FFT (a) -

MAD (a)

IFFT (a) - -

MAD (b)

ADD (c) 2

IFFT - -

 frequency and time domain approaches have high arithmetic

density due to complex arithmetic operations and circular

convolutions, respectively, resulting in higher complexity.

Blocks PB2 and PB3 are also implemented in time-domain

using weighted and delayed contribution from driving signals

at listener positions with computational complexity
 and respectively.

5. GPU IMPLEMENTATION

Most of the audio processing is done in GPU using low level

CUDA programming language along with MATLAB as host

environment, controlling the GPU execution. Recently,

MATLAB has added the support for GPU computing to its

parallel computing toolbox (PCT) to take advantage of the

parallel computing from MATLAB environment [17].

MATLAB along with the CUDA kernels [18] serves as a

useful tool for the fast development of existing MATLAB

applications onto GPU using custom CUDA functions, as

well as overloaded MATLAB functions for GPU.

The datasets to be computed are carefully partitioned into

multiple contiguous blocks to take advantage of the data reuse

using the on-chip cache and exploit coalesced memory access

as much as possible. WFS algorithm is also segregated into

parallel functions to exploit maximum data parallelism. Other

CPU-GPU optimizations include shared memory, constant

memory, data reorganizations, and overlapped executions are

also taken into account to further speed up the processing

time. We will now describe the implementation of each

parallel task on GPU along with the optimization choices

made for the best performance.

5.1. Pre-filtering of multiple sources

Computational complexity of this task is in (),
where Ns is the number of sources. A total of
threads are launched with thread block size of 256 threads.

Each thread computes one complex multiplication for a single

source sample with the corresponding filter coefficient.

Shared memory is used to synchronize the common filter

coefficients within a thread block. Both MATLAB built-in

overloaded FFT function for GPU, as well as NVIDIA

CUFFT library [4] are considered, since both can perform

frequency transformations for multiple sources concurrently.

5.2. Driving signals computation

Driving signals are computed in time domain after taking

inverse Fourier transform and discarding first invalid M

samples from output at stage (a). The current M pre-filtered

samples are then merged with previous 2,048 samples to form

pre-filtered source buffers (to access delayed samples of

driving signals). As mentioned in Section 4, driving signals

computation is further divided into two stages to extract the

maximum data parallelism. First, individual driving signals

are computed as three-dimensional output matrix of size

(). Kernel is launched with threads

with two dimensional thread blocks of size threads,

corresponding to samples of driving signals. A thread

block computes these samples with each thread

computing one sample. Weight and delay values are

computed once for each speaker position and are reused using

shared memory within a thread block. Pre-filtered source

samples are also transferred to shared memory and shared

across a thread block to further reduce the memory latency.

Finally, driving signals for each loudspeaker are computed

as separate CUDA kernel using reduction sum across the third

dimension of the output matrix at stage (b). Since reduction

sum is a sequential operation, kernel with threads will

result in very low throughput with each thread performing
serial additions. We parallelize the reduction sum using

binary tree based parallel reduction [19], where partial sums

are computed in parallel and synchronized within thread

block. Kernel is thus, launched with one dimensional thread

block of size Ns and grid size of thread blocks. Each

thread block computes one sample of a driving signal and

result is written back to global memory.

5.3. Synthesized signals and Sound field synthesis

computation

Similar to the driving signals computation, processing blocks

PB2 and PB3 are implemented in GPU by launching two

separate kernels, one for computations of weighted and

delayed driving signals and other for the parallel reduction

sum (see Section 5.2). First kernel is launched with
 threads and threads respectively, for

PB2 and PB3. For second kernel, each thread block (of size L

threads) computes one sample of synthesized signal at a given

listener position using parallel reduction sum for both the

processing blocks.

 Other optimizations include constant memory to

store speaker and source positions, overlapped executions on

host side for data transfer as well as data rearrangements.

6. RESULTS

Our processing platform consists of the Intel quad core i7

processor as CPU, and Fermi architecture based C2075 as

448-core GPU with 14 simultaneous multiprocessors (SMs).

We analyze the performance of the real-time WFS set up

based on implementation aspects, like latency and throughput

of the system as well as algorithmic complexity. It should be

noted that the CPU implementation inherently takes

7602

Overlapped
execution

Shared memory,
PB1

Parallel reduction
sum

Shared memory,
PB2

3

4

5

6

7

8

1 x
256

2 x
128

4 x
64

8 x
32

16 x
16

32
x 8

64
x 4

128
x 2

256
x 1

GPU_wo_smem GPU_w_smem

Thread block size

A
ve

ra
ge

 e
xe

c.
 T

im
e

(m
se

c)

ml

7%

59%

21%

13%

Figure 3 Impact of major optimization techniques over

GPU un-optimized implementation

(Ns =100, L = 161, M = 512, Ls = 1)

GPU Optimized
GPU un optimized
CPU

161 Speakers
81 Speakers
41 Speakers
21 Speakers
9 Speakers

(a) Average execution times per frame (b) Peak system throughput

10
0

10
1

10
2

10
31

10

100

Number of Sources

Ex
ec

u
ti

o
n

 T
im

e(
m

se
c)

9 21 41 81 161
0

500

1000

1500

Number of Loudspeakers

Th
ro

u
gh

p
u

t
(M

sa
m

p
le

s/
se

co
n

d
s)

framet

Figure 4 Average Execution times and Peak throughput of

overall system (PB1 + PB2)

advantage of the multicore host architecture and

multithreading by MATLAB inbuilt functions.

Number of speakers and sound sources are the two main

parameters, which control the real-time performance of the

WFS driving function block both in terms of efficiency and

behavior. In order to create a realistic and practiced WFS

system, multiple sources rendering over huge loudspeaker

array is required. But, a real-time implementation poses

constraints on the number of loudspeakers and sources, and

often there is a tradeoff between performance and behavior of

the system. Fewer loudspeakers can result in spatial aliasing,

while limited number of virtual sources may not give an

enriching sound experience to the listeners. Since modern

GPUs are capable of running thousands of threads in parallel

by exploiting massive data parallelism inherent in an

application, real-time performance can be improved

significantly, while at the same time achieving desired sound

field quality.

Table 2 shows the average execution time per frame for

the three processing blocks rendering a single source.

Execution times reported for GPU is inclusive of the data

transfer between host and device. Upon dividing the reported

execution time by the number of samples processed for each

block, PB3 is clearly identified as the slowest block. It

executes 275 times fast after GPU optimization, which is

mainly due to the inherent massive data parallelism involved

in the computation of synthesized signals. On the other hand,

PB1 is the slowest block after GPU optimization given the

lack of much parallelism in single source rendering. For

driving function block, the number of samples processed is L

× M × Ns while, for the other two blocks, it is same as their

complexity. GPU efficiency can be considerably improved

when there are many sources to be rendered by extracting

more data parallelism. However, increasing the workload on

GPU will also incur high global memory overhead. As

discussed in Section 5, several optimization techniques can be

applied to speed up the system. Figure 3 shows the impact of

major optimizations on system performance. As shown, after

shared memory optimization, kernel for stage (b) executes

twice as fast as one without any optimization. It is also shown

that how the different choices of thread block configuration

affect the execution time. As shown, there is a trade-off

between choices of l and m, with optimum thread block

configuration found to be for a fixed block size of 256

threads. This is mainly due to the extra memory overheads or

more arithmetic operations at the two extremes choices of l

and m. Similarly, optimum thread block sizes for other

kernels have been found. From the pie chart shown in Figure

3, shared memory with optimum thread block size has most

of the impact in improving the GPU performance with 59%

share for the driving function block PB1. However, for block

PB2, there is only 13% improvement over non-optimized

GPU implementation. This is mainly due to the fewer data

parallelism present in PB2 as compared to PB1. Another

significant effect is due to the parallel reduction sum

especially, if CUDA kernel is launched with thousands of

threads. Finally, overlapped execution, which was used to

perform some of the data transfers and host processes

simultaneously with kernel execution, also resulted in 6%

latency savings.
Figure 4 shows the average execution times per frame and

peak throughput of the overall system for blocks PB1 and

PB2. As shown, processing time must be less than for

WFS set up to perform in real-time (Figure 4). Thus, GPU

can render up to 1,000 real-time sources for 9 speakers or 200

real-time sources for 161 speakers. At the same time one can

also listen to the synthesized signals in real-time. System

throughput is calculated as number of sampled processed per

unit time. As shown in Figure 4, optimized GPU

implementation can have peak system throughput of 1,400

MSPS almost twice of the un-optimized GPU

implementations and 20 times of the CPU based

implementation. It is also important to note that throughput

can be substantially improved by increasing the GPU

workload and hence, exploiting the maximum data

parallelism in GPU.
7. CONCLUSION

In this paper, we presented a fast and efficient GPU

implementation for a real-time wave field synthesis system.

We have successfully accelerated the overall WFS set up with

peak throughput of 1,400 MSPS using several GPU

optimization techniques. We achieved 20-fold improvement

over CPU based implementation, while up to 200 sources can

be rendered in real-time with 161 loudspeaker array. In

addition, for high-end GPUs running thousands of parallel

threads, we are able to synthesize WFS signals at any listener

positions in real-time with as many sources. One of the main

features of this work is that all the audio processing is done in

GPU, while CPU is freed for other independent tasks like IO

buffering or overlapped data transfers. Among the several

optimization techniques, shared memory provides us the most

significant performance improvement.

7603

8. REFERENCES

[1] D. de Vries, "Wave Field Synthesis," in AES

Monograph, New York, 2009.

[2] SonicEmotion. [Online]. Available:

http://www.sonicemotion.com/home

[3] IOSONO. [Online]. Available: http://www.iosono-

sound.com/

[4] NVIDIA, "NVIDIA CUDA C Programming

Guide— v4.2," April 2012.

[5] T. Mathworks. MATLAB: The Language of

Technical Computing. [Online]. Available:

http://www.mathworks.com/products/matlab/index.h

tml

[6] D. Theodoropoulos, C. B. Ciobanu, and G.

Kuzmanov, "Wave field synthesis for 3D audio:

architectural prospectives," in ACM International

Conference on Computing Frontiers, 2009, pp. 127-

136.

[7] D. Theodoropoulos, G. Kuzmanov, and G.

Gaydadjiev, "Multi-Core Platforms for

Beamforming and Wave Field Synthesis," IEEE

Transactions on Multimedia, vol. 13, pp. 235-245,

2011.

[8] A. Lattanzi, E. Ciavattini, S. Cecchi, L. Romoli, and

F. Ferrandi, "Real-Time Implementation of Wave

Field Synthesis on NU-Tech Framework Using

CUDA Technology," in 128th AES Convention,

London, 2010.

[9] A. Lattanzi, F. Bettarelli, and S. Cecchi, "NU-Tech:

the entry tool of the hArtes toolchain for algorithms

design," in 124th AES Convention, , Amsterdam,

The Netherlands, 2008, pp. 1-8.

[10] J. A. Belloch, M. Ferrer, A. Gonzalez, J. Lorente,

and A. M. Vidal, "GPU-Based WFS Systems with

Mobile Virtual Sound Sources and Room

Compensation," in Audio Engineering Society

Conference: 52nd International Conference: Sound

Field Control-Engineering and Perception, 2013.

[11] A. J. Berkhout, "A holographic approach to acoustic

control," Journal of the Audio Engineering Society,

vol. 36, pp. 977-995, 1988.

[12] A. J. Berkhout, D. de Vries, and P. Vogel, "Acoustic

control by wave field synthesis," The Journal of the

Acoustical Society of America, vol. 93, p. 2764,

1993.

[13] R. Ranjan and W. S. Gan, "Wave Field Synthesis:

The Future of Spatial Audio," IEEE Potentials, vol.

32, pp. 17-23, April 2013.

[14] P. Vogel, "Application of wave field synthesis in

room acoustics," PhD Thesis, Delft University of

Technology, 1993.

[15] J. A. Belloch, A. Gonzalez, F.-J. Martínez-Zaldívar,

and A. M. Vidal, "Real-time massive convolution for

audio applications on GPU," The Journal of

Supercomputing, vol. 58, pp. 449-457, 2011.

[16] J. A. Belloch, M. Ferrer, A. Gonzalez, F.-J.

Martínez-Zaldívar, and A. M. Vidal, "Headphone-

based Spatial Sound with a GPU Accelerator,"

Procedia Computer Science, vol. 9, pp. 116-125,

2012.

[17] T. Mathworks. MATLAB GPU Computing Support

for NVIDIA CUDA-Enabled GPUs. Available:

http://www.mathworks.com/discovery/matlab-

gpu.html

[18] MATLAB-CUDA. CUDA kernel integration in

MATLAB applications [Online]. Available:

http://www.mathworks.com/help/distcomp/executin

g-cuda-or-ptx-code-on-the-gpu.html

[19] M. Harris, S. Sengupta, and J. D. Owens, "Parallel

prefix sum (scan) with CUDA," GPU gems, vol. 3,

pp. 851-876, 2007.

7604

