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ABSTRACT

Phase synchronization has emerged as an important concept

in quantifying interactions between dynamical systems. In

this work a robust estimate of the phase synchrony between

bivariate signals is presented. This is achieved by extending

the recently introduced synchrosqueezing transform (SST), a

method that belongs to the class of reassignment techniques

that generates highly localized time-frequency representa-

tions, so as to cater for bivariate data. The proposed method

is shown to generate accurate estimates of phase synchrony

on both synthetic and real world signals.

Index Terms— Synchrosqueezing transform, phase syn-

chronization.

1. INTRODUCTION

Analyzing the interactions between bivariate oscillatory sys-

tems is important in fields ranging from computational neu-

roscience [1] to oceanography [2]. Quantifying such interac-

tions has traditionally been carried out using cross-correlation

and coherence based techniques, however such methods as-

sume linearity in the underlying systems and are therefore

unable to capture the non-linear dynamics of real-world sys-

tems, such as interactions between cognitive processes [3] [4].

Recently, it has emerged that the interdependencies between

weakly interacting oscillatory systems [5] [6] can be mea-

sured by estimating the phase synchrony that arises between

such systems, a case where traditional methods fail. This

has enabled real world applications of phase synchronization

in the analysis of human physiological responses, such as in

electroencephalography (EEG) [1] [3] and electromyography

(EMG) data analysis [5].

Conventional phase synchrony estimation techniques are

based on the Hilbert and wavelet transforms [1]; however

the wavelet transform projects the signal across a fixed set

of basis functions and has a limited time-frequency resolu-

tion, while using the Hilbert transform requires a narrowband

signal, a rather stringent assumption. This affects the perfor-

mance, as e.g. to produce monocomponent data filter cutoffs

need to be determined a priori, thus prohibiting the tracking

of drifting oscillations.

It has been demonstrated [7] that the empirical mode de-

composition (EMD) overcomes such limitations, by decom-

posing a signal into a set of narrowband AM/FM components

termed intrinsic mode functions (IMFs). This makes possible

the application of the Hilbert transform to such well defined

IMFs, in order to obtain an accurate estimate of instantaneous

phase. In this way, the phase synchrony for all IMFs between

the source pairs can then be calculated [8], however, the use of

the univariate EMD on separate data channels does not guar-

antee the same number of IMFs across the data channels and

the integrity of information. A rigorous way for EMD based

phase synchrony was introduced in [9], by employing the bi-

variate empirical mode decomposition (BEMD) [10], which

guarantees coherent and aligned bivariate IMFs, a prerequi-

site for accurate synchrony estimation.

While multivariate EMD-based phase synchrony methods

have overcome the limitations of the traditional phase syn-

chrony estimation techniques [9] [11] [12], a strong theoreti-

cal description for the underlying algorithms [13] is still lack-

ing. To this end, we propose to apply the recently developed

synchrosqueezing transform in estimating phase synchrony.

The synchrosqueezing transform [13] [14] initially emerged

as a post-processing technique to address limitations of the

continuous wavelet transform (CWT) in simultaneously lo-

calizing oscillations both in time and frequency. By reas-

signing the energies of the CWT coefficients, such that the

resulting energy of coefficients is concentrated around the

instantaneous frequency curves of the oscillations, the syn-

chrosqueezing transform has been shown to generate well lo-

calized time-frequency representations [15] [16].

In this work we propose a multivariate extension of the

SST in order to identify bivariate monocomponent signals

necessary for accurate estimation of the phase synchrony. The

localization and stability of the proposed method is demon-

strated on synthetic and real-world data.

2. SYNCHROSQUEEZED TRANSFORM

The continuous wavelet transform is a projection based time-

frequency algorithm that finds signal components through a

series of localized filters known as wavelets. A wavelet ψ(t)
is a square integrable function, and can be seen as set of scaled
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bandpass filters, that is convolved with a signal x(t), as fol-

lows

W (a, b) =

∫

a−1/2ψ

(

t− b

a

)

x(t) dt (1)

where W (a, b) are the wavelet coefficients. The scale fac-

tor a shifts the wavelet ψ(t) in the frequency domain so that

oscillatory features across different frequency scales are cap-

tured. Given a sinusoid at a frequency ωs, the resulting CWT

coefficients of the sinusoid will spread out around the scale

factor as =
ωψ
ωs

, where ωψ is the wavelet center frequency.

In this way, the estimated instantaneous frequency present in

the scales near the vicinity of as =
ωψ
ωs

is equal to the origi-

nal frequency ωs. It is now possible, given an estimate of the

instantaneous frequency ωx(a, b)

ωx(a, b) = −ı̇W (a, b)
∂W (a, b)

∂b
(2)

for each scale-time pair (a, b), for the wavelet coefficients

containing the same instantaneous frequencies to be com-

bined in a procedure known as synchrosqueezing [13]. For

the wavelet coefficients W (a, b), the synchrosqueezing trans-

form1 T (ω, b) is given by

T (ωl, b) =
∑

ak: |ωx(ak,b)−ωl|≤∆ω/2

W (ak, b) a
−3/2 ∆ak (3)

and it reallocates the energy of wavelet coefficients so as to

enhance frequency localization.

3. PHASE SYNCHRONIZATION

For two oscillatory systems with instantaneous phases φx(t)
and φy(t), the phase synchronization of the system is charac-

terized by an index that measures the strength of phase lock-

ing that occurs between the difference of the instantaneous

phases, φxy(t) = φx(t)−φy(t), that is |φxy(t)| < constant.

The phase synchrony index ρ(t), used in this work is based

on Shannon entropy [5] and is given by

ρ(t) =
Hmax −H

Hmax
(4)

where H = −
∑N
n=1 pn ln pn, is the entropy of the distribu-

tion of the windowed phase difference φxy(t−
W
2 : t+ W

2 ),
for a given window length W , and Hmax = lnN (where

N is the number of bins), is the maximum entropy within

the window W , corresponding to a uniform distribution. It

then follows that for a pair of systems that are in synchrony,

the distribution of the phase difference will approach a Dirac

delta distribution, and will thus have a low entropy and by (4)

a high phase synchrony score.
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Fig. 1: The partitioned frequency domain with the multivari-

ate bandwidth given by Bl,m, where l corresponds to the level

of the frequency band (L = 5 typically), and m is the fre-

quency band index.

4. PHASE SYNCHRONIZATION USING SST

In order to measure the phase synchrony between two sig-

nals x1(t) and x2(t) the synchrosqueezing transform is first

applied to each signal separately yielding the respective SST

coefficients T1(ω, b) and T2(ω, b). Next, a set of monocom-

ponent oscillations which are matched in frequency need to be

identified such that phase synchrony between two common

oscillatory mode can be determined. To this end, we intro-

duce a multivariate extension of the method proposed in [18],

with the aim to obtain a set of multivariate monocomponent

signals based on the bandwidth of the original multivariate

signal. The first step is to partition the time-frequency plane

into 2l equal-width frequency bands, between the frequency

range

ωl,m =

[

m

2l+1
,
m+ 1

2l+1

]

(5)

where l = 0, . . . , L, is referred to as the level of the frequency

bands andm = 0, . . . , 2l−1, the index of the frequency band.

For a given frequency band ωl,m at level l and index m, the

multivariate bandwidth Bl,m can then be calculated [19], as

shown in Fig. 1.

To obtain the multivariate bandwidth within the frequency

band ωl,m, we first calculate the Fourier transform of the in-

verse of the SST coefficients within the frequency band ωl,m,

that is

Φl,m(ω) =



F







R−1
ψ

∑

ω∈ωl,m

Tn(ω, b)











n=1,2

(6)

1The detailed implementation of the SST can be found in [17].
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where n is the channel index, F{·} the Fourier transform,Rψ
the normalization constant [13] and Φl,m(ω) ∈ R

N a column

vector. The joint analytic spectrum is determined according

to

Sl,m(ω) =
1

E
||Φl,m(ω)||2 (7)

where E corresponds to the total energy of the joint analytic

spectrum

E =
1

2π

∫ ∞

0

||Φl,m(ω)||2 dω. (8)

The joint global mean frequency is given by

ωl,m =
1

2π

∫ ∞

0

ωSl,m(ω) dω, (9)

and corresponds to the average frequency of the joint analytic

spectrum. The multivariate bandwidth squared (joint global

second central moment [19]) measures the spectral deviation

of the joint analytic spectrum from the joint global mean fre-

quency, and is given by

B
2
l,m =

1

2π

∫ ∞

0

(ω − ωl,m)2Sl,m(ω) dω. (10)

For illustration, consider a frequency band ωl,m that contains

two monocomponent signals separated in frequency, such that

the frequency subbands ωl+1,2m and ωl+1,2m+1 contain the

separate monocomponent signals. From (10) the multivariate

bandwidth in the frequency band ωl,m, is greater than the mul-

tivariate bandwidths within the individual subbands ωl+1,2m

and ωl+1,2m+1; implying that monocomponent signals sep-

arated in frequency can be identified by splitting larger fre-

quency bands into smaller frequency subbands, based on the

multivariate bandwidth [18]. In this way, a frequency band

ωl,m is split based on the following condition

Bl,m >
Bl+1,2mΛl+1,2m + Bl+1,2m+1Λl+1,2m+1

Λl+1,2m + Λl+1,2m+1
(11)

where

Λl+1,2m =

T
∑

b=1

(Al+1,2m(b))2

Λl+1,2m+1 =

T
∑

b=1

(Al+1,2m+1(b))
2

with Al+1,2m(b) and Al+1,2m+1(b) corresponding to the

multivariate instantaneous amplitudes for the respective fre-

quency subbands, given by

Al,m(b) =

√

∑

ω∈ωl,m

|T1(ω, b)|2 +
∑

ω∈ωl,m

|T2(ω, b)|2.

The condition in (11) considers the power differences be-

tween two frequency subbands, as frequency subbands that

have negligible signal content would affect the outcome of

whether or not the frequency band is split. The final set of K

frequency bands is given by {ωk}k=1,...,K .

Upon identifying the frequency bands {ωk}k=1,...,K , the

instantaneous phase φnk (b) for each frequency band k, and

signal n, can now be calculated as

ank (b)e
ı̇φnk (b) = R−1

ψ

∑

ω∈ωk

Tn(ω, b). (12)

The phase synchrony for each (outlined in Section 3) scale

is then determined, and the phase symphony spectrogram can

be calculated using e.g. the method in [9].
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Fig. 2: Phase synchrony spectrograms of a bivariate linear

chirp signal in white noise. (Upper panel) BEMD based phase

synchrony method; (Lower panel) multivariate SST based

phase synchrony method.

5. SIMULATIONS

Simulations were conducted on both synthetic and real world

signals. The proposed method was compared to the bivari-

ate empirical mode decomposition (BEMD) based phase syn-

chrony method, as outlined in [9].

5.1. Synthetic signals

In order to quantify the performance of the proposed method,

the first simulation was conducted on a bivariate signal con-
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taining a common sinusoidal oscillation of frequency fo in

varying levels of Gaussian noise. The oscillations were sam-

pled at fs = 256Hz for a duration of 5 seconds. To assess the

performance of the proposed multivariate SST based method,

the average synchrony score ρs was obtained at the frequency

of the sinusoidal oscillation fo. From Table 1, it can be seen

that, as desired, synchrony scores observed for the proposed

method are higher than the BEMD based phase synchrony

method.

Table 1: The average synchrony, ρs, between the channels of

a bivariate signal, at different frequency and noise levels.

Algorithm
P

P
P

P
P

P
P

SNR

Frequency
5Hz 10Hz 20Hz 40Hz

SST 5dB 0.88 0.81 0.58 0.25

BEMD 5dB 0.44 0.25 0.15 0.06

SST 3dB 0.8 0.71 0.42 0.14

BEMD 3dB 0.34 0.17 0.11 0.03

SST 0dB 0.75 0.62 0.29 0.08

BEMD 0dB 0.29 0.13 0.07 0.02

To illustrate the performance advantages of using the

multivariate SST based synchrony method in analyzing syn-

chronized time-varying oscillations, the proposed method

was next applied to a bivariate chirp signal sampled at

fs = 256Hz, in 5dB of white Gaussian noise. From Fig. 2 it

can be seen that the proposed method localizes the chirp sig-

nal and eliminates most of the background noise. Also note

the improvement over the BEMD based synchrony method.

5.2. Human motion analysis

The bivariate signal was obtained from two 3D accelerome-

ters, attached to the wrists of a test subject. The subject was

instructed to walk, with information pertaining to the arm

swings being recorded by the accelerometers, our assumption

was that the motion from the subject’s left and right wrists

was synchronized. The bivariate signal was constructed using

the y-axis accelerometer data (the y-axis of the accelerometer

was perpendicular to ground, when the subject was at rest)

from the left and right wrists of the test subject.

Observe from Fig. 3a that the oscillations between the

samples 400-800 and 900-1200 corresponding to the subject’s

arm swings appear to be phase locked. This is confirmed in

Fig. 3b where both the multivariate SST (lower panel) and

BEMD (upper panel) based phase synchrony spectrograms

show intermittent phase synchronization at approximately

3Hz and 6Hz. Notice that the synchrony spectrogram of

proposed method, localizes the phase synchronization more

effectively with less variability and residual noise, compared

with the BEMD based phase synchrony method.

0 200 400 600 800 1000 1200 1400
−10

0

10

20

30

40

Samples

A
c
c
e

le
ra

ti
o

n
 (

m
/s

2
)

 

 

Left wrist

Right wrist

(a) Accelerometer data

Samples

F
re

q
u
e
n
c
y
 (

H
z
)

 

 

200 400 600 800 1000 1200 1400
0

2

4

6

8

10

12

0

0.2

0.4

0.6

0.8

1

Samples

F
re

q
u
e
n
c
y
 (

H
z
)

 

 

200 400 600 800 1000 1200 1400
0

2

4

6

8

10

12

0

0.2

0.4

0.6

0.8

1

(b) Phase synchrony spectrograms

Fig. 3: Phase synchrony in human walk. (a) Time domain

representation of the accelerometer data. (b) Phase synchrony

spectrograms of the accelerometer data using (upper panel)

BEMD based phase synchrony method and (lower panel)

multivariate SST based phase synchrony method.

6. CONCLUSION

A robust phase synchrony measurement technique has been

proposed using the synchrosqueezing transform. This is

achieved by partitioning the time-frequency domain in such

a way that a set of matched monocomponent signals can be

identified and the phase synchrony estimated. The bene-

fits of the proposed multivariate SST based phase synchrony

method have been illustrated on both synthetic and real-world

signals.
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