
GPU BASED IMPLEMENTATION OF MULTICHANNEL ADAPTIVE ROOM EQUALIZATION

Jorge Lorente, Miguel Ferrer, Maria de Diego, Alberto Gonzalez

Instituto de Telecomunicaciones y Aplicaciones Multimedia (iTEAM), Universitat Politècnica de València (UPV)

ABSTRACT

Multichannel adaptive equalization (AE) systems require
high computational capacity, which constraints their practical
implementation. Graphics Processing Units (GPUs) are well
known due to their potential for highly parallel data process-
ing. Although the GPUs seem to be suitable platforms for
multichannel scenarios, an efficient use of parallel computa-
tion in the adaptive filtering context is not straightforward due
to the feedback loops. This paper presents a GPU implemen-
tation of a multichannel AE system based on the filtered-x
LMS algorithm working over a real-time prototype. Details
of the parallelization of the algorithm are given. Experimental
results are presented to validate and computationally analyze
the real-time performance of the AE GPU implementation.
Results show the usefulness of GPUs to develop versatile,
scalable and low cost multichannel AE systems.

Index Terms— adaptive equalization, filtered-x LMS,
graphics processing unit, frequency domain adaptive filters

1. INTRODUCTION

Multichannel equalization finds application in audio repro-
duction systems that create a given acoustic environment such
as 3-D audio systems or audio applications in which different
sounds are supply to separate listeners in the same listening
space. Generally speaking, these systems intend to reproduce
some desired signals at certain points of the listening space
[1, 2]. The behavior of the acoustic system at a particular lis-
tening position (usually monitored by a microphone) is char-
acterized by its impulse response. Thus, room equalization is
used to modify the frequency spectrum of the original source
before feeding it to the loudspeaker in order to compensate
for the loudspeaker and listening room responses. The goal is
to make the global impulse response as close as possible to a
desired one. Thus, the combined effect of the equalizer and
the acoustic path will allow to obtain a good approximation
of the desired signal at the microphone.

Traditionally, fixed equalization techniques have been
used to compensate these room effects. In these methods
the equalization filters are computed once, and usually in a
previous stage to the rendering one. However, this task in
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multichannel scenarios is not straightforward, and efficient
computational methods are needed. This has led to the us-
age of adaptive systems that iteratively compute the filters.
Moreover, real systems imply time-varying scenarios and the
adaptive equalization filters are able to follow these changes.
In the adaptive equalization context, literature contains sev-
eral interesting algorithms, which usually consider a least
mean square (LMS) algorithm, in time or frequency domain.
However, most of these works only present results for a
single-input multiple-output (SIMO) system, that is, an AE
the computes only one adaptive filter for all the microphones
signals [3, 4] which seems insufficient to perform equaliza-
tion in multichannel scenarios with massive audience, where
the sound has to be equalized at each listener position. In this
massive scenarios, multiple-input multiple-output (MIMO)
systems [5] become essential to compensate room effects.

On the other hand, AE MIMO systems which involve high
number of long adaptive compensation filters and require high
computational capacity, seems suitable to be implemented on
GPUs. Using the NVIDIA programming language CUDA [6]
the GPUs provides massive parallel computation for general-
purpose computing, and therefore are being employed in most
of the engineering fields that require intensive computation
like signal processing [7]. A general overview of audio signal
processing using GPUs is offered in [8]. Moreover, many re-
cent contributions are taking advantage of the GPUs to accel-
erate acoustic/audio real-time applications like: room acous-
tics [9], acoustics likelihood computation [10], RIR reshaping
[11], wave-field synthesis [12], massive filtering [13] and re-
cursive filtering [14]. Although some authors have suggested
the use of GPUs in the adaptive filtering context [15, 16],
there are very few publications [17, 18, 19] dealing with the
GPU implementation of real-time acoustic applications based
on adaptive filtering. This is because the data transactions
among GPU, CPU and the audio card needed at each iteration
are critical for the real-time performance.

In previous works [18, 19], a single-channel and a multi-
channel active noise control (ANC) systems based on the fre-
quency partitioned block filtered-x LMS (FPBFxLMS) algo-
rithm were implemented on a GPU. In this paper, a multichan-
nel AE system based on the FPBFxLMS algorithm has been
implemented on the GPU. The choice of the algorithm is con-
ditioned by the efficient use of parallel computation. In a first
stage, the use of the Frequency-domain Block-based filtered-
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Table 1. Notation of the description of the algorithms
I Number of input signals J Number of secondary sources (actuators)
K Number of error signals (monitoring sensors) B Block size
L Length of the adaptive filters F L/B, number of partitions of the adaptive filters
M Length of the FIR filters that model the acoustic paths P M/B, number of partitions of the estimated acoustic paths
xi(t) ith input signal at time instant t xiBn [xi(Bn) xi(Bn− 1) . . . xi(Bn−B + 1)]

yj(t) jth actuator signal at time instant t yjBn [yj(Bn) yj(Bn− 1) . . . yj(Bn−B + 1)]

ek(t) kth algorithm error signal at time instant t ekBn [ek(Bn) ek(Bn− 1) . . . ek(Bn−B + 1)]

mk(t) kth microphone signal at time instant t mkBn [mk(Bn) mk(Bn− 1) . . . mk(Bn−B + 1)]

dk(t) kth desired signal at time instant t dkBn [dk(Bn) dk(Bn− 1) . . . dk(Bn−B + 1)]

hjk M-length estimation of the acoustic path that links the jth secondary source with the kth monitoring sensor
Hjkp FFT of size 2B of the pth partition of the acoustic path hjk

wijn Coefficients of the adaptive filter of length L that links the ith input signal with the jth secondary source
Wijfn FFT of size 2B of the f th partition of the coefficients of the adaptive filter wij during the nth block iteration

x LMS [20], is motivated by the following reasons. The par-
allel resources of a GPU are better exploited working with
blocks of samples instead of sample-by-sample, and most of
the common audio cards work with block data buffers. In a
second stage, since the adaptive filters could be larger than
the block size, the adaptive filters are partitioned [21], and
therefore the delay is reduced and the parallelization is im-
proved by performing the adaptation of each partition of the
filters at the same time. These reasons lead us to the use of
the FPBFxLMS algorithm.

This paper is organized as follows: section 2 outlines the
FPBFxLMS algorithm. Section 3 describes the GPU imple-
mentation of the prototype. Finally, section 4 and 5 are de-
voted to report the experimental results and conclusions.

2. THE FPBFXLMS ALGORITHM

This section focuses on illustrating the FPBFxLMS algo-
rithm. For simplicity, the block diagram of a single channel
AE system is depicted in Fig. 1. However, notation in Table 1
will be used to describe the algorithm for a generic multi-
channel AE system with I input signals, J secondary sources
and K monitoring sensors (I:J :K). Furthermore, the sub-
index and super-index of the following notation denote block
iteration and number of partition respectively. The acoustic
paths have been previously modeled by FIR filters.

The adaptive filter output is calculated as follows

Yjn =

I∑
i=1

F∑
f=1

Wijfn ◦Xin−f+1, (1)

where Xin = FFT[xiBn−1 xiBn], and ◦ denotes the
element-wise product of two vectors. The adaptive filter
output yjBn are the last B samples of IFFT{Yjn}.

The algorithm error signal is calculated by subtracting the
desired signal to the microphone signal. Therefore if the al-
gorithm error signal tends to zero, the microphone signal con-
verges to the desired signal. The operations are the following:

ekBn = mkBn − dkBn. (2)
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Acoustic

path 
Adaptive 
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FPBFxLMS
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Fig. 1. Block diagram of a single channel AE system based
on the FPBFxLMS algorithm.

Ekn = FFT[0B ekBn]. (3)

The update of the coefficients of each partition of the ijth
adaptive filters is calculated in frequency domain as follows

Wijfn = Wijfn−1 + µ
K∑

k=1

FFT{[ϕijkf 0B]}, (4)

being µ the step-size parameter, and the vector ϕijkf cor-
responds to the first B samples of the 2B-IFFT of the corre-
sponding partition µ̃ijkf

IFFT{µ̃ijkf} = [ϕijkf ϕ̄ijkf ]. (5)

Finally, vector µ̃ijkf is obtained by calculating the cor-
relations between the input signals filtered through the esti-
mated secondary paths Vijkn, and the error signals Ekn. To
this end, the following operations are performed:

Vijkn =
P∑

p=1

Hjkp ◦Xin−p+1, (6)

µ̃ijkf = Ekn ◦Vijkf
∗
. (7)

3. GPU IMPLEMENTATION OF THE PROTOTYPE

The prototype uses a CPU, a GPU and an audio card. The
GPU used is a GeForce GTX 580 with Fermi architecture.
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Fig. 2. Block diagram of the GPU implementation of the FPBFxLMS algorithm.

The CPU is an Intel Core i7 (3.07 GHz) and the audio card
is a MOTU 24I/O. The MOTU audio uses the ASIO (Audio
Stream Input/Output) driver to communicate with the CPU.
The ASIO driver provides input/output buffers that are used to
collect/send the current microphone and loudspeaker signals.
The input buffers are linked to the microphones and the output
buffers to the loudspeakers. The operation of the prototype
consists of three tasks that are executed at each iteration:

1. Collect the K input-data buffers of size B from the sensors,
and transfer them through the PCI-Express bus to the GPU.

2. Carry out the corresponding algorithm on the GPU.

3. Save the output audio samples into the J output-data
buffers and send them back to the CPU in order to be
rendered through the loudspeakers.

Two important parameters given by the MOTU are the
sampling rate (fs) and the block size (B), which describes
the number of transferred discrete-time samples per iteration.
The MOTU offers three sampling rates: 44.1, 44.8 and 96
kHz and B sizes between: B = 256 and 2048. The lower rate
(fs = 44.1 kHz) has been chosen, however it is a fairly high
rate for the sounds involved. The choice of the size of B, is
critical for the real-time performance of the system, since the
application can work in real time if the following condition
is satisfied: tproc < tbuff , where tbuff = B/fs is the time
spent to fill up the input-data buffer, and tproc is the execution
delay. This includes transfer delays between CPU and GPU
and the data processing delay on the GPU.

Figure 2 shows the GPU implementation of the algorithm.
The NVIDIA FFT library (CUFFT) [6] has been used for car-
rying out simultaneously multiple FFTs. The algorithm uses
4 optimized GPU kernels:

1. Kernel 1 performs an element-wise multiplication of two
matrices. This kernel launches a three-dimensional grid of
three-dimensional blocks of threads. The blocks are dimen-
sioned with (x,y,z)1 threads, and grid with (F/x, 2B/y, IJ/z)
1x,y,z are selected according to the restrictions of the CUDA architecture

of the device. In our case, Fermi device [6]

blocks. The kernel uses each thread for processing each
sample, thus each thread will perform a complex multipli-
cation between elements of each matrix.

2. Kernel 2 reduce the F columns of each plane to a single
one. This kernel uses a three-dimensional grid of blocks,
where the dimension of the blocks and grid are (1, y, z)
and (1, 2B/y, m/z), respectively. The kernel launches 2B ·
m threads in total. Each thread carries out F sums. The
result is a 2B × m matrix where each element of the 2B-
dimension columns contain the reduction sum of each row.
Note that m is the number of planes of 2B × F elements
of the matrix involved.

3. Kernel 3 performs a sum of m planes with the same sub-
index. As an example, the matrix µ̃ of IJK planes results
in a matrix of IJ planes after performing this kernel. In this
case, a sum of K planes (m = K) with the same ij sub-
indexes is performed. This Kernel launches 2B ·P threads
divided into a grid of P blocks, where each block has 2B
threads. Each thread performs the sum of m elements.

4. kernel 4 has the same thread configuration as kernel 1, but
each thread performs a sum instead of a multiplication.

4. RESULTS

Some experiments are presented here to study the perfor-
mance of the GPU based AE system. The experiments have
been conducted in live by using the prototype described in
section 3. On the one hand, the algorithm behavior has been
evaluated. On the other hand, the computational limits of the
GPU implementation have been studied.

Regarding the algorithm behavior, the experiment con-
sists on evaluating the system distance index (D) [22], which
finds the distance between the real case and the ideal case. Re-
garding a system configuration with one input signal (I = 1),
D is defined for the nth iteration at each sensor k as Dkn =
20 log10(|

∑J
j=1(w1jn∗hjk)−dk|2/|dk|2), being dk the K

desired system vectors which ideally corresponds to delayed
delta functions, and | · |2 the 2-norm.
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Fig. 3. Dkn evolution for the 1:2:2 configuration at microphone 1 (a) and microphone 2 (b).

Table 2. Maximum I:J :K system for different size of B
B=256 B=512 B=1024 B=2048

tprocmax
5.8 ms 11.6 ms 23.2 ms 46.4 ms

I:J :K 1:13:13 1:18:18 1:24:24 1:36:36
Channels 169 324 576 1,089

Figure 3 shows the evolution of the D parameter at both
microphones using a 1:2:2 configuration, a block size of B =
512 and adjusting the µ parameter to the maximum value that
assures stability. The D parameter has been measured with
a voice interference signal at the microphones for different
signal to interference ratios (SIR). If the interferences power
increases, the SIR ratio decrease and the maximum µ param-
eter that assures stability also decreases [23]. As a result, the
convergence speed is reduced. Although low ratios of SIR are
used, good results in terms of the D parameter are obtained,
which means that the algorithm is robust even with low SIR
levels. However, the best performance is achieved when there
is no interference affecting to the operation of the prototype,
and results get worst by reducing the SIR ratio.

Focusing on the GPU results, the computational limits
have been analyzed varying the size of B. The size of B af-
fects both the algorithm behavior and the computing results.
On the one hand, as B decreases, the FPBFxLMS converges
faster [19], but on the other hand, the real-time condition lim-
its the processing time to tproc < B/fs, so if B decreases
there is less time for processing, and therefore less channels
can be processed. Therefore, the ideal value of B must be
chosen depending on the needs of the applications.

Table 2 shows the maximum number of loudspeakers and
microphones that the GPU implementation can handle in real-
time for AE systems with one input signal (I=1), the same
number of loudspeakers and microphones (J=K) and varying
the size of B. Using the hardware configuration of section 3,
results show that in the best case, the system can handle in
real time more than 1.000 channels, defining a channel as a

pair loudspeaker-sensor. However, more channels could be
processed by using a lower sampling rate or using a newer
card with more computing capacity. It is important to note
that for this analysis, a previous analysis of the distribution of
threads in a block and blocks in a grid is necessary for each
specific case in order to achieve a good performance [18].
This previous analysis consists in testing the processing delay
of the algorithm for each specific I:J :K case changing the
dimensions of both blocks of threads and grids of blocks to
find the fastest configuration for each different case.

5. CONCLUSIONS

This work analyzes the suitability of GPUs for real-time im-
plementation of multichannel adaptive systems, specifically
for AE systems based on the FxLMS algorithm. To fit the
hardware/GPU requirements, the algorithms has been imple-
mented in frequency domain, working with blocks of data
and partitioning the adaptive filters. As a result, a prototype
of multichannel AE application has been successfully imple-
mented in GPU using CUDA language and taking benefit of
the parallelization of the multiple channels involved. Some
CUDA programming aspects like the GPU data transfers or
the number and distribution of the threads in a block and
blocks in a grid has been analyzed in order to guarantee an
efficient implementation.

Results show good performance of the AE prototype even
when there are interfering signals with low SIR levels. Fi-
nally, in order to obtain a massive multichannel equalization
system suitable for a massive audience through the use of a
high number of loudspeakers/sensors, the computing limits of
the AE system has been studied. It has been demonstrated that
the GPU is a meaningful and versatile solution for massive
multichannel AE systems with even more than 1,000 chan-
nels processed in real time. Moreover, it is important to note
that more channels could be processed using a different au-
dio card with lower frequency sampling, decimating or using
newer GPUs with more computational capacity.
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