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ABSTRACT

Deep neural networks show very good performance in phoneme and
speech recognition applications when compared to previously used
GMM (Gaussian Mixture Model)-based ones. However, efficient
implementation of deep neural networks is difficult because the net-
work size needs to be very large when high recognition accuracy is
demanded. In this work, we develop a digital VLSI for phoneme
recognition using deep neural networks and assess the design in
terms of throughput, chip size, and power consumption. The de-
veloped VLSI employs a fixed-point optimization method that only
uses +∆, 0, and -∆ for representing each of the weight. The design
employs 1,024 simple processing units in each layer, which how-
ever can be scaled easily according to the needed throughput, and
the throughput of the architecture varies from 62.5 to 1,000 times of
the real-time processing speed.

Index Terms— Deep neural network, fixed-point optimization,
phoneme recognition, VLSI

1. INTRODUCTION

Feed-forward deep neural networks (DNNs) employ multiple hid-
den layers, and they show quite good performance in speech and
pattern recognition applications [1, 2]. Figure 1 shows a deep neural
network composed of one input layer, four hidden layers, and one
output layer.

The output of the (k + 1)-th layer, yk+1, is computed using
Eq. (1) and (2), where yk, Wk+1, bk+1, and netk+1 are the input
signal vector, weight matrix, bias vector, and net vector, respectively.

netk+1 = Wk+1yk + bk+1 (1)

yk+1 = fk+1(netk+1). (2)

Note that fk+1(·) represents the activation function, and the sigmoid
function represented in Eq. (3) is usually used.

fk+1(x) =
1

1 + e−x
(3)

The operation of a DNN algorithm is quite memory access in-
tensive because it employs all-to-all weighted connections between
the units in adjacent layers. When the number of units in each layer
is 1,024, the size of parameters for representing one hidden layer,
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Fig. 1: A deep neural network with four hidden layers.

Wk, becomes 1 million. As a result, a practical DNN demands mil-
lions of weights, which are usually represented in the floating-point
format. Most of the DNN applications are currently implemented
using CPUs or GPUs [3, 4].

VLSI-based implementation of DNN algorithms is demanded
for high-throughput and low-power applications. There are sev-
eral, such as analog, digital, hybrid, and FPGA implementation
approaches for neural networks [5, 6, 7, 8, 9, 10, 11]. However, the
number of neurons in a layer is restricted to a small number in those
implementations. We choose the digital VLSI-based architecture not
only to exploit the convenience of circuit design but also to utilize
high-density memory. Since the computing structure of the feed-
forward DNN is very similar to the matrix-vector multiplication,
the algorithm can be implemented using many processing elements.
However, it is very needed to design a chip that contains all the
weights in order to minimize external memory accesses.

In this study, we design a VLSI for DNN-based phoneme recog-
nition. The algorithm needs approximately more than 5 million
weights and 500 million arithmetic operations per second for real-
time operation. In order to store all the weights on a small CMOS
chip, the precision of the weights are reduced to only 3 levels (+∆,
0, and -∆) by employing the fixed-point optimization method de-
scribed in Section 2. The developed architecture assigns one pro-
cessing element to each unit of the DNN algorithm in order to max-
imize the parallel factor and increase the throughput. The developed
VLSI can process one frame (10 millisecond) of speech in 0.01 mil-
lisecond using 1,024 cycles of 102.4 MHz clock, which translates
about 1,000 times of the real-time processing speed.

This paper is organized as follows. In Section 2, a fixed-point
deep neural network for phoneme recognition is developed. Section
3 describes the VLSI architecture of the developed fixed-point DNN.
We show the synthesis and simulation results of the developed VLSI
in Section 4. Finally, concluding remarks follow in Section 5.
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2. FIXED-POINT DNN DESIGN FOR PHONEME
RECOGNITION

We use the DNN-based phoneme recognition algorithm that con-
sists of an input layer, four hidden layers, and one output layer as
illustrated in Fig. 1. The input layer contains 429 linear units to
accept real-valued inputs that correspond to 11 frames of MFCC
(Mel-frequency cepstral coefficient) parameters. Each of the four
hidden layers contains 1,024 logistic units. The output layer consists
of 61 logistic units that correspond to 61 target phoneme labels. The
similar structure can be found in [4]. This design implements mono-
phone recognition, but it can be easily extended to triphone based
one by increasing the number of units in the output layer.

The network is pre-trained with unsupervised greedy restricted
Boltzmann machine (RBM) learning [2]. The linear-logistic RBM
is trained by 40 epochs under the learning rate of 0.005. For the
other RBM, we use 20 epochs of 1-step contrastive-divergence-
based stochastic gradient descent with the mini-batch size of 128,
the learning rate of 0.05, and the momentum of 0.9. For the fine-
tuning, we use 10 epochs of the back-propagation with the stochastic
gradient descent, the mini-batch size of 128, the fixed learning rate
of 0.05, and the momentum of 0.9.

For VLSI-based implementation of a DNN, fixed-point arith-
metic is much desired [12]. However, direct quantization of the
trained floating-point weights does not yield good results. Therefore,
we employ the weight quantization strategy similar to the algorithms
proposed in [7, 13] to retrain the weights after the direct quantiza-
tion. Also, internal signals (output values of the units) are uniformly
quantized from 0 to 1.

Initial fixed-point weights are obtained by directly quantizing
the trained floating-point weights. The units in each layer share the
same quantization step size ∆, which is determined using an opti-
mization technique to minimize L2 error of weights followed by ex-
haustive search of the parameter. In order to further refine the fixed-
point weights, the back-propagation-based retraining algorithm is
reapplied. In the retraining procedure, we maintain both the high-
and low-precision weights and signals to accumulate the effects of
small adaptation error. We only use two bits for representing 3-level
weights (+∆, 0, and -∆) and four bits for internal signals.

Recently, a new training algorithm that intentionally drops out
some of the connections in the network to prevent early over-fitting
was developed [14]. In this algorithm, some processing elements
that are randomly chosen are forced to have zero output. This al-
gorithm shows excellent performance with floating-point arithmetic.
We found that this algorithm also yields better recognition perfor-
mance when applied to fixed-point DNN optimization.

Table 1 shows the performance of floating-point and fixed-point
DNNs for phoneme recognition. The conventional training does not
employ the drop-out during the back-propagation. For this training,
we use the TIMIT corpus that is comprised of a training set from 462
speakers and a test set from 168 speakers [15]. All SA recordings,
utterances of the same sentences from every speaker, in the corpus
are removed during training since it can give bias to the results. The
input receives 39 dimension MFCCs, which are 12th-order MFCCs
with energy and their first and second temporal derivatives. MFCCs
are extracted using the 25-ms Hamming window with the 10-ms
frame rate. We use 11 consecutive frames, and the parameters are
normalized to have zero mean and unit variance [4]. The evaluation
uses 39 phones which are mapped from the original 61 phones as
described in [16].

Table 1: Frame level phoneme recognition error rate according to
the training method with floating-point and fixed-point arithmetic.

Hidden layer size and training method
Error rate (%)

Floating-point Fixed-point
1,024-unit-layer with conv. training 26.24 27.63

1,024-unit-layer with drop-out training 23.71 24.93

3. HARDWARE ARCHITECTURE

The computing structure for each layer of a DNN is similar to the
matrix-vector multiplication shown in Eq. (1), where the weights are
stored in the matrix and the input signal in the anterior layer is the
vector yk. The only difference is that the activation functions are
needed for computing the output. Thus, there can be two parallel
computing structures; one is the inner product and the other is the
outer product methods [17]. In the inner product method, all the
input whose size can be 1,024 in this design are applied to compute
one output. This results in 1,024 clock cycles to compute all the
output. This design requires one very complex processing unit that
can conduct the inner product of 1,024 input data at each clock. This
design is not much desired because the delay of the inner product
network is proportional to log2(] of input size).

We use the outer product approach that equips 1,024 simple pro-
cessing units and apply one input data at each clock. Each process-
ing unit is very simple and contains only one accumulator. This
approach needs 1,024 clocks to apply all the input data sequentially.
We can modify this basic outer product architecture according to
the needed throughput. In order to lower the throughput, the num-
ber of processing units can be reduced, and each processing element
is used in the time-multiplexed manner to compute multiple output
data. Note that reducing the number of processing units lowers the
throughput and may save the chip area for implementing the process-
ing elements, but the on-chip memory size for storing the weights is
not changed. Further increasing the throughput is also possible by
modifying the processing elements so that they can process multiple
input data at a time. If N data are provided at each clock cycle, and
each processing element is modified to conduct the inner product of
N weighted input data, the total number of clock cycles for each
layer can be reduced to d1024/Ne.

Figure 2(a) shows the overall architecture that contains five lay-
ers. The computation in each layer is pipelined so that the maximum
throughput is independent of the number of layers. Figure 2(b) il-
lustrates the structure of a tile that updates the output values in the
hidden or output layer, which computes (1) and (2). Each tile con-
tains 16 1 k× 128-bit single-port memories (Wmem) for storing one
mega weights, 1,024 processing units (PUs), and an activation func-
tion unit. Note that because we use the weights of +1, 0, and -1
in the operation of a PU instead of +∆, 0, and -∆, each weight
is represented in two bits, and the quantization step, ∆, needs to
be multiplied to a net value netk+1,i before applying the activation
function. Each tile also contains an unsigned 7-bit register that keeps
the quantization step size ∆. Figure 2(c) shows the structure of a PU.
The input data width, wD , is 8 bits in the input layer and 4 bits in the
hidden layers because the input precision of a phoneme recognizer
needs to be high to yield good performance. Because biases need to
have high precision, the bias value is represented in 17 and 13 bits in
the input and hidden layers, respectively.

The timing diagram of the phoneme recognition VLSI is shown
in Fig. 3. The first step of the procedure is to initialize 16 SRAMs
(Wmemi) with one mega weights. Because 64 weights are loaded
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Fig. 2: Architecture of the x 1000 real-time phoneme recognition
VLSI. (a) Overall architecture. (b) Structure of a tile. (c) Structure
of a processing unit.

to the tile at every clock cycle, it takes 80 k clock cycles. In order
to reduce the number of input ports for this phoneme recognizer, the
(wD +9)-bit bias register in a PU and the 7-bit ∆ register are imple-
mented with shift registers. Once the initialization phase is finished,
the one output value in the anterior layer is applied to the tile, and
then the PEs conduct outer product operations. After 1,024 clock
cycles, the updated net value netk+1,i in the i-th PU is transferred
to the next tile through the activation function unit at the i-th clock
cycle.

The PU in Fig. 2(c) operates as follows. In the beginning of ev-
ery update operation, the (wD +9)-bit net register, NET in Fig. 2(c),
is set to zero, and the (wD+9)-bit bias, BIAS in Fig. 2(c), is selected
as the input to the adder by the multiplexer mux2. The multiplexer
mux1 chooses the another input to the adder according to the 2-bit
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Fig. 3: Timing diagram of the x1000 real-time phoneme recognition
VLSI for a frame. The input signals are shown in bold type, whereas
the output and internal ones are represented in italic font.

weightWin. Din, 0, and−Din are selected according to the weight
+1 (01), 0 (00), and -1 (11), respectively. The net register is updated
with the output of the adder. In the subsequent 1022 clock cycles
(the second to 1023-th clock cycles), the net register is chosen as the
input to the adder by the multiplexer mux2, and the output of the
adder is stored to the net register. Finally, in the last clock cycle (the
1024-th clock cycle), the output register, Dout in Fig. 2(c), is updated
with the output of the adder. The output register keeps its value un-
til the next 1024-th clock cycle, while the net register continues to
update its value.

Since there are approximately 35 % of non-zero and 22 % of
negative weights in the 1,024 × 1,024 weight matrix Wk, the word-
length of the net register needs to be larger than that of the input
signal Din by 9 bits to prevent overflow. The activation function
has a multiplier for multiplying with the quantization step size, ∆.
A simple combinational logic circuit is used to convert a signed
(wD + 9 + 7)-bit ∆ × netk+1,i to an unsigned 4-bit signal value.
The output is pipelined to reduce the path delay.

4. EXPERIMENTAL RESULTS

The proposed feed-forward DNN VLSI with the parallel factor of
1,024 was synthesized in 0.13-µm CMOS technology using Synop-
sys Design Compiler. Figure 4 show the cell area for the phoneme
recognition VLSI. To investigate the effect of the parallel factor, we
also designed two VLSIs with the parallel factors of 64 and 256,
and all the designs were synthesized under the same operating con-
ditions.

The areas of SRAMs and registers remain the same regardless
of the parallel factor, whereas that of PEs is almost in proportional
to the parallel factor. This is because there are the same numbers of
coefficient, bias, net, and delta memories regardless of the parallel
factor. We note again that coefficients are stored in SRAMs, whereas
biases, nets, and deltas are kept in registers. The area of miscella-
neous logics for the parallel factor of 64 and 256 is larger than that of
1,024, because the time multiplexing operation for the parallel factor
of 64 and 256 requires additional control logics. Therefore, the total
cell area is not much affected by the parallel factor.

The power consumption of the phoneme recognition VLSI de-
signs are shown in Fig. 5, which was estimated using Synopsys
PrimeTime, where VLSI-1, VLSI-2, and VLSI-3 employ the par-
allel factors of 1,024, 256, and 64, respectively. We also operate
VLSI-1 and VLSI-2 with a low frequency for a reduced throughput
operation. In this case, VLSI-1 operates at the clock frequency of
25.6 MHz and 6.4 MHz for the throughput of x250 and x62.5, re-
spectively, and VLSI-2 is clocked with the frequency of 25.6 MHz
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for x62.5 real-time operation. The VLSI-1 that employs the highest
parallel factor is very attractive for low throughput also. The power
consumption of this design is 2.1 and 5.7 times smaller than those
of VLSI-2 and VLSI-3, respectively. This is because the dynamic
power consumption is linearly proportional to the clock frequency.

5. CONCLUDING REMARKS

We have developed VLSI architecture for deep neural network
(DNN)-based phoneme recognition. The developed feed-forward
DNN employs 4 hidden layers, and each layer contains 1,024 units,
and as a result the network demands a total of 5 million weights.
Since each weight is represented in two bits through fixed-point
optimization, the total internal memory size for storing the weights
is reduced to only 10 M bits. The chip employs the parallel factor of
1,024 by equipping 1,024 low-complexity processing units in each
layer. The chip occupies approximately 45.7 mm2 with a 0.13-µm
CMOS technology. The chip consumes about 1.5 W when operating
at 102.4 MHz for the throughput of x1000 real-time. We also com-

pare the designs with the parallel factors of 1,024, 256 and 64. The
designs with the lowered parallel factor do not show significant chip
area reduction, while consuming more power when compared to the
design with a high parallel factor for obtaining the same through-
put. The chip area is mostly occupied by the memory for storing
weights and registers, which consumes almost the same circuit
size regardless of the parallel factor. This study shows that digital
DNN VLSI architecture is very advantageous for implementing very
high-throughput and low-power recognition system design.

6. REFERENCES

[1] G.E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning
algorithm for deep belief nets,” Neural Comput., vol. 18, no.
7, pp. 1527–1554, July 2006.

[2] G.E. Hinton and R.R. Salakhutdinov, “Reducing the dimen-
sionality of data with neural networks,” Science, vol. 313, no.
5786, pp. 504–507, July 2006.

[3] V. Vanhoucke, A. Senior, and M.Z. Mao, “Improving the speed
of neural networks on CPUs,” in Proc. Deep Learning and
Unsupervised Feature Learning NIPS Workshop, 2011.

[4] A. Mohamed, G.E. Dahl, and G. Hinton, “Acoustic modeling
using deep belief networks,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 20, no. 1, pp. 14–22, Jan. 2012.

[5] D. Hammerstrom, “A VLSI architecture for high-performance,
low-cost, on-chip learning,” in Proc. Int. Joint Conf. Neural
Networks (IJCNN’90), June 1990, vol. 2, pp. 537–544.

[6] M.S. Tomlinson Jr., D.J. Walker, and M.A. Sivilotti, “A digital
neural network architecture for VLSI,” in Proc. Int. Joint Conf.
Neural Networks (IJCNN’90), June 1990, vol. 2, pp. 545–550.

[7] C.Z. Tang and H.K. Kwan, “Multilayer feedforward neural
networks with single powers-of-two weights,” IEEE Trans.
Signal Process., vol. 41, no. 8, pp. 2724–2727, Aug. 1993.

[8] J.L. Ayala, A.G. Lomena, M. Lopez-Vallejo, and A. Fernandez,
“Design of a pipelined hardware architecture for real-time neu-
ral network computations,” in Proc. IEEE Int. Midwest Symp.
Circuits Syst. (MWSCAS’02), Aug. 2002, vol. 1, pp. 419–422.

[9] S. Jung and S.S. Kim, “Hardware implementation of a real-
time neural network controller with a DSP and an FPGA for
nonlinear systems,” IEEE Trans. Ind. Electron., vol. 54, no. 1,
pp. 265–271, Feb. 2007.

[10] J. Misra and I. Saha, “Artificial neural networks in hardware:
A survey of two decades of progress,” Neurocomputing, vol.
74, no. 1-3, pp. 239–255, Dec. 2010.

[11] I.C. Goknar, M. Yildiz, S. Minaei, and E. Deniz, “Neural
CMOS-integrated circuit and its application to data classifica-
tion,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 5,
pp. 717–724, May 2012.

[12] W. Sung and K.-I. Kum, “Simulation-based word-length opti-
mization method for fixed-point digital signal processing sys-
tems,” IEEE Trans. Signal Process., vol. 43, no. 12, pp. 3087–
3090, Dec. 1995.

[13] E. Fiesler, A. Choudry, and H.J. Caulfield, “Weight discretiza-
tion paradigm for optical neural networks,” in The Hague’90,
12-16 April. International Society for Optics and Photonics,
1990, pp. 164–173.

7563



[14] G.E. Dahl, T.N. Sainath, and G.E. Hinton, “Improving deep
neural networks for LVCSR using rectified linear units and
dropout,” in Proc. IEEE Int. Conf. Acoustics, Speech and Sig-
nal Proc., (ICASSP’13), May 2013, pp. 8609–8613.

[15] M. Schuster and K.K. Paliwal, “Bidirectional recurrent neural
networks,” IEEE Trans. Signal Process., vol. 45, no. 11, pp.
2673–2681, Nov. 1997.

[16] K.-F. Lee and H.-W. Hon, “Speaker-independent phone recog-
nition using hidden Markov models,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 37, no. 11, pp. 1641–1648, Nov.
1989.

[17] G.H. Golub and C.F. Van Loan, Matrix computations, vol. 3,
JHU Press, 2012.

7564


