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ABSTRACT
We propose a novel cepstral representation called the uniform dis-
crete cepstrum (UDC) to represent the timbre of sound sources in a
sound mixture. Different from ordinary cepstrum and MFCC which
have to be calculated from the full magnitude spectrum of a source
after source separation, UDC can be calculated directly from isolated
spectral points that are likely to belong to the source in the mixture
spectrum (e.g., non-overlapping harmonics of a harmonic source).
Existing cepstral representations that have this property are discrete
cepstrum and regularized discrete cepstrum, however, compared to
the proposed UDC, they are not as effective and are more complex
to compute. The key advantage of UDC is that it uses a more natural
and locally adaptive regularizer to prevent it from overfitting the iso-
lated spectral points. We derive the mathematical relations between
these cepstral representations, and compare their timbre modeling
performances in the task of instrument recognition in polyphonic au-
dio mixtures. We show that UDC and its mel-scale variant MUDC
significantly outperform all the other representations.

Index Terms— Cepstrum, timbre, instrument recognition, poly-
phonic

1. INTRODUCTION

Timbre, also known as tone quality or tone color, plays an impor-
tant role for humans in evaluating the aesthetics of a musical note
articulation, in recognizing and discriminating sound events, and in
tracking sound sources in polyphonic mixtures. Finding out good
physical representations of timbre has been an active research topic
for a long time. A good timbre representation would be useful in
speaker identification and instrument recognition. It would also be
useful for sound source tracking and separation.

Over the years, researchers have found that the rough spec-
tral content and its temporal evolution characterizes timbre pretty
well. Physical properties that quantify the spectral content include
spectral centroid, skewness, kurtosis, spread, flatness, irregularity,
and roll-off, among others [1]. Physical properties that quantify
the temporal evolution of the spectral content include spectral flux,
vibrato/tremolo rate and depth, and the attack/release time of the
amplitude envelope [1]. Another category of representations as-
sume the source-filter model of sound production, where the source
(excitation) signal carries the pitch information and the frequency
response of the resonance filter determines the timbre. The fre-
quency response of the filter is invariant to pitch. Researchers have
proposed different ways to represent the filter, some are in the time
domain such as linear predictive coding (LPC) [2] and its perceptual
modification PLP [3], while others are in the cepstrum domain [4]
such as mel-frequency cepstral coefficients (MFCC) [5].

These above-mentioned timbre features have shown great suc-
cess in sound synthesis, speech recognition, speaker and instrument
identification, music genre classification, etc. However, they have a
common limitation: they cannot model the timbre of a sound source
in a mixture without resorting to source separation, because their
calculation requires the whole signal/spectrum of the sound source.
However, source separation is an extremely difficult problem.

In this paper we are interested in timbre features for sound
sources that can be calculated from the mixture signal directly,
without resorting to source separation. To simplify this problem,
we assume the sources are harmonic sources and their pitches have
been correctly estimated. It is noted that even in this case, source
separation is a hard problem, due to overlapping harmonic issues
and reconstruction of nonharmonic regions.

The harmonic structure feature (HS), proposed in [6], is defined
as the relative log-amplitudes of the harmonics of the source. It can
be calculated from the sound mixture directly without source sep-
aration, assuming the pitch is provided. It has been shown to suc-
cessfully model the timbre of the sound source for source separation
[6] and multi-pitch streaming [7]. However, it is only pitch-invariant
within a narrow pitch range (say one octave) [6].

Discrete cepstrum (DC), proposed by Galas and Rodet [8], is a
cepstral representation of a sound source that can be calculated from
a sparse set of points of its spectrum. For harmonic sound sources,
the frequencies are the (non-overlapping) harmonics. Therefore, like
harmonic structure, it can be calculated for a sound source from the
mixture signal directly without source separation. However, it has
the issue that the reconstructed spectral representation overfits the
sparse set of spectral points and oscillates a lot at other frequencies.
Cappe et al. [9] identified this problem and imposed a regularization
term to prevent the unwanted oscillations, and named the regular-
ized representation the Regularized Discrete Cepstrum (RDC). Nev-
ertheless, the strength of regularization is manually controlled, and
is not easy to adapt for different frames of the signal. Both DC and
RDC were proposed for spectral envelope reconstruction purposes
and have never been tested in timbre discrimination experiments.

In this paper, we propose a new cepstral representation called
uniform discrete cepstrum (UDC). Similar to DC and RDC, it is cal-
culated from a sparse set of frequencies of the magnitude spectrum,
hence can be calculated for each source from the mixture spectrum
directly without source separation. The advantage of UDC is that it
uses a natural and locally adaptive regularizer to prevent overfitting,
hence is more robust in timbre modeling. In addition, its calcula-
tion is simpler than DC and RDC. In the experiments, we compare
UDC and its mel-scale variant MUDC with other timbre representa-
tions, and show that they outperform others in a musical instrument
recognition task from polyphonic audio.
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2. CALCULATION OF UDC AND MUDC

In this section, we describe how to calculate a UDC feature vector of
a sound source from the mixture spectrum. Let f = [f1, · · · , fN ]T

and a = [a1, · · · , aN ]T be the full set of normalized frequencies
(Hz/Fs, Fs being the sampling frequency in Hz) and log-amplitudes
(dB) of the mixture spectrum of discrete Fourier transform (DFT).
Suppose f̂ = [f̂1, · · · , f̂L]T and â = [â1, · · · , âL]T are the sparse
subset of the spectral points that are likely to solely belong to the
source we want to model1, which we call the observable spectral
points for the source. Then the UDC is calculated by

cudc = M̂T â, (1)

where

M̂ =

 1
√
2 cos(2π1f̂1) · · ·

√
2 cos(2π(p− 1)f̂1)

...
...

...
...

1
√
2 cos(2π1f̂L) · · ·

√
2 cos(2π(p− 1)f̂L)

 ;

(2)
and p is the cepstrum order, i.e. the number of coefficients. The
definition of Eq. (1) and (2) originates from the general concept of
cepstrum, and will be discussed in Section 3.

If for f̂ in Eq. (2) we use normalized mel-scale frequencies in-
stead of normalized frequencies, we obtain a mel-scale variant of
UDC in Eq. (1), called MUDC, or cmudc. The normalized mel-scale
frequencies is defined as 0.5mel(Hz)/mel(Fs/2), where mel(Hz) =
2595 log10(1 + Hz× Fs/700);

The calculation of UDC and MUDC only requires the observ-
able spectral points instead of the full separated spectrum of the
source. For a harmonic source in an audio mixture, these observable
spectral points can be the non-overlapping harmonic peaks given the
pitch. It is noted that these points are not enough to reconstruct the
spectrum of the source. Energy at overlapping harmonic peaks and
non-peak regions need to be allocated to different sources in source
separation as well.

3. RELATION TO OTHER CEPSTRAL
REPRESENTATIONS

The concept of cepstrum [4] is to approximate (up to a scale) a log-
amplitude spectrum a(f) by a weighted sum of p sinusoids:

a(f) ≈ c0 +
√
2

p−1∑
i=1

ci cos(2πif), (3)

where the coefficients c = [c0, c1, · · · , cp−1]
T form a cepstrum of

order p; f is the normalized frequency. By varying f , Eq. (3) forms
a linear equation system, where the number of equations is the num-
ber of frequencies at which we make the approximation. A common
approximation criterion is to minimize the Euclidean distance be-
tween both sides, which leads to the least squares solution of the
coefficients.

It turns out that the ordinary cepstrum (OC) is the least square
solution when we make the approximation at all the N frequency
bins f . There are in total N equations, which can be written in the
matrix notation as:

a = Mc, (4)

1In fact, f̂ need not to be a subset of frequency bins in Fourier analysis.
They can be frequencies in between the bins, and â can be the corresponding
interpolated values. In this case, the first equality of Eq. (10) will be an
approximation.

where

M =

 1
√
2 cos(2π1f1) · · ·

√
2 cos(2π(p− 1)f1)

...
...

...
...

1
√
2 cos(2π1fN ) · · ·

√
2 cos(2π(p− 1)fN )

 ,

(5)
consists of the first p columns of a discrete cosine transform (DCT)
matrix. The least square solution of the coefficients is

coc = (MTM)−1MTa =
1

N
MTa, (6)

where the last equality follows that the columns of M are orthogonal
and all have a Euclidean norm of

√
N .

coc is calculated by approximating the full log-amplitude spec-
trum and it reconstructs a smoothed version of the spectrum. If the
spectrum is warped into a mel-scale filterbank before the cepstrum
calculation, then the cepstrum is the so called mel-frequency cepstral
coefficients (MFCC). Both OC and MFCC have been shown to per-
form well in timbre discrimination, when they are calculated from
isolated recordings of sound sources [10]. However, from a mixture
spectrum containing multiple sound sources as what we are inter-
ested in this paper, they cannot be calculated to represent the timbre
of the sound sources without source separation.

There does exist a cepstral representation called discrete cep-
strum (DC) proposed by Galas and Rodet [8] that can be calculated
from only a sparse set of spectral points instead of the full spectrum.
In fact, DC is defined as the least square solution of Eq. (3) when
the approximation is made only at the L observable spectral points,
i.e. the following system of L equations:

â = M̂c, (7)

where M̂ is given in Eq. (2). Its least square solution is

cdc = (M̂TM̂)−1M̂T â. (8)

Since the approximation is only performed at the L observable
spectral points, cdc reconstructs a smooth curve that goes through
the observable spectral points and ignores the other parts of the spec-
trum. When these points are harmonics of a source, this curve is a
spectral envelope of the source spectrum. Representations of spec-
tral envelopes are essential for sound synthesis and this was what
DC was proposed for in [8]. However, it can also be used for timbre
discrimination, although it has never been tested before.

Eq. (7) has L equations and p unknowns. One needs to make
p <= L to obtain unique solutions. However, this requirement is
not always satisfied since the number of observable spectral points
L of the target source may vary significantly in different time frames
of the mixture spectrum. Furthermore, the matrix M̂TM̂ is often
poorly-conditioned due to the large frequency gap between some
observable spectral points. This means that non-significant pertur-
bations of the observable spectral points may cause large variations
of the estimated coefficients. The reconstructed spectral envelope
tends to overfit the observable spectral points of the source, while
oscillating significantly at the other frequencies.

This problem of cdc was identified by Cappé et al. in [9]. They
then proposed a regularized discrete cepstrum (RDC) by introduc-
ing to the least square system a regularization term, which prefers
solutions that reconstructs smoother spectral envelopes:

crdc = (M̂TM̂+ λR)−1M̂T â, (9)
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where R is a diagonal matrix derived from a particular kind of reg-
ularization; λ controls the tradeoff between the original least square
objective and the regularization term.

The proposal of UDC and MUDC was inspired by DC. Their
calculation also only uses the observable spectral points of the inter-
ested sound source, hence they can be calculated from the mixture
spectrum directly. This is an advantage over OC and MFCC, which
require source separation first. Furthermore, by comparing Eq. (2)
with Eq. (5) we can see that M̂ is a sub-matrix (a subset of rows)
of M, corresponding to the L observable frequency bins. Therefore,
we can rewrite Eq. (1) as

cudc = MT ã = N(MTM)−1MT ã, (10)

where ã is a sparse log-amplitude spectrum of the same dimension-
ality with the full mixture spectrum a. It takes values of a at the
sparse observable spectral points, and zeros everywhere else. Eq.
(10) tells us that cudc is equivalent to calculating the scaled (by N )
ordinary cepstrum of the sparse spectrum ã. It is the scaled least
square solution of ã = Mc. It is noted that ã would not serve as
a good separated spectrum of the source. It is too sparse and its
reconstructed source signal would contain musical noise.

Comparing Eq. (1) and Eq. (8), we can see that cdc =
(M̂TM̂)−1cudc. Therefore cudc is not the least square solution
for â = M̂c, as cdc is. This means that the reconstructed smooth
curve from cudc will not go through the observable spectral points as
close as that reconstructed from cdc. In fact, since cudc is the least
square solution of ã = Mc, it also needs to fit the zero elements in
the sparse spectrum ã. From another perspective, the zero elements
in ã actually serve as another kind of regularizer that prevents cudc

from overfitting the observable spectral points.
Compared with the parameterized, global regularizer in RDC,

this regularizer in UDC is non-parametric, adaptive, and local. Its
strength varies naturally with the number (which is N −L) and pat-
tern of the observable spectral points. When L is small in some
frames, the regularizer is stronger. When there a big gap between
two adjacent observable spectral points, the zero elements in be-
tween form a straight line and prevent significant oscillations of the
reconstructed smooth curve in this gap. Furthermore, the calcula-
tion of UDC and MUDC is simpler than RDC and DC. The latter
involves matrix inversion and multiple matrix multiplications while
the former is just one matrix multiplication. In the following sec-
tions, we perform experiments to show that UDC and MUDC indeed
represent timbre of sound sources and outperform other cepstral rep-
resentations in instrument recognition from polyphonic mixtures.

4. EXPERIMENT ON ISOLATED NOTE SAMPLES

In the first experiment, we compare the six above-mentioned cepstral
representations (OC, MFCC, DC, RDC, UDC, and MUDC) and the
harmonic structure feature (HS), all calculated from the spectra of
isolated note samples. We want to show that the proposed UDC and
MUDC indeed characterize the timbre of musical instruments.

The dataset we use is the University of Iowa musical instrument
samples database [11], which contains isolated note samples of a col-
lection of Western pitched instruments recorded in different pitches,
dynamics, and performing styles. We selected in total 687 notes
from 13 instruments: flute, oboe, Bb clarinet, bassoon, alto saxo-
phone, trumpet, horn, tenor trombone, tuba, violin, viola, cello, and
bass. These notes cover the full pitch range of each instrument, and
are all played in mezzo forte (mf) dynamic. Notes of string instru-
ments are played in the arco style (i.e., with a bow).

For each note, we randomly select five frames (length of 46ms)
in the sustain part. We apply a hamming window on each frame and
perform discrete Fourier transform with four-times zero padding to
obtain its spectrum. The OC and MFCC features are then calcu-
lated from the whole log-amplitude spectrum of each frame. We use
Dan Ellis’s implementation [12] with a 40-band mel filter bank in
calculating MFCC features. DC, RDC, UDC, MUDC, and HS fea-
tures are calculated from the harmonic peaks of the spectrum. We
use YIN [13] to detect the ground-truth pitch of the frame. Peaks
that are within a quarter tone of a harmonic position is considered a
harmonic peak. Only the first 50 harmonic positions are considered.

For each feature, we calculate the Fisher score [14] to quantify
its discrimination power on instrument timbre:

Fisher score = tr{Sb(St)
−1}, (11)

where Sb is the between-class scatter matrix which measures the
scatterness of the representative points (the averages) of different
classes, and St is the total scatter matrix which measures the scat-
terness of all the data points. Larger Fisher scores indicate better
discrimination power hence better timbre modeling performance.
Therefore, we prefer timbre features that give a large Fisher score.
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Fig. 1. Fisher score of the seven different features versus the dimen-
sionality used in the features, calculated from 5 random frames of the
sustain part of 687 isolated note samples of 13 Western instruments.

Figure 1 shows the Fisher scores calculated for different features
versus dimensionality, i.e. the number of first coefficients used in the
calculation. We can see that OC achieves the highest Fisher scores
for all dimensionality and MFCC also achieves high scores. This is
expected as they are calculated from the whole spectrum while the
other features are calculated only from the harmonics. It is interest-
ing to see that UDC and MUDC achieve Fisher scores comparable to
MFCC. When the dimensionality is larger than 15, the Fisher score
of MUDC even slightly exceeds MFCC. The gap between UDC and
the other three features are very wide at all dimensionality. RDC
and HS achieve similar Fisher scores while DC achieves the worst
score. The bad performance of DC is expected due to its overfitting
problem described in Section 3.

5. EXPERIMENT ON INSTRUMENT RECOGNITION
FROM POLYPHONIC MIXTURES

We now compare the seven features on an instrument recognition
task from polyphonic audio mixtures. We want to show advantages
of the proposed UDC and MUDC over the other features on this task.

We still considered the 13 kinds of Western instruments in this
experiment. We trained a multi-class SVM classifier using the LIB-
SVM package [15] on the features calculated from the 687 isolated
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notes from the University of Iowa database described in Section 4.
Again, five frames in the sustain part of each note were randomly
selected, resulting in 3435 training vectors for each kind of feature.
We normalized each dimension of the training feature vectors to the
[-1, 1] range. We used a radial basis function (RBF) kernel and tuned
the cost parameterC among {1, 10, 100, 1000, 10000} for each fea-
ture. The best value was found using 5-fold cross validation on the
training feature vectors when the dimensionality of 20 was used.

We tested the classifier using randomly mixed chords of polyphony
from two to six, using isolated note samples from the RWC musi-
cal instrument dataset [16]. In total 1556 notes performed in mezzo
forte without vibrato were selected from the 13 kinds of instruments.
The notes of each kind of instrument were performed using three
different brands of that instrument by three different players. The
notes cover the full pitch range of the instrument. To generate a
testing mixture of polyphony P , we first randomly chose without
replacement P types of instruments. We then randomly chose a
single note for each instrument, and a single frame in the sustain
part of that note. We mixed the selected P frames with equal RMS
values into a mixture frame. We used YIN [13] to detect the ground-
truth pitch of each source before mixing. For each polyphony, we
generated 1000 such mixtures.

For each source in each mixture, we calculated a timbre fea-
ture and classified it using the trained SVM. For OC and MFCC,
the feature vector was calculated from the separated spectrum of the
source using a soft-masking-based source separation method [17],
which takes the ground-truth pitches as input. For DC, RDC, UDC,
MUDC, and HS, the feature vector was calculated from the harmonic
peaks of the source in the mixture spectrum, provided the ground-
truth pitches. The percentage of correctly classified feature vectors
over the total number of feature vectors is the classification accu-
racy. Since there are 13 instruments, the random classification accu-
racy would be roughly 8%, without considering the imbalance of the
number of notes played by different instruments.

Figure 2 shows the average classification accuracies over 10 runs
(1 run = data generation + training + testing) using different fea-
tures versus the feature dimensionality. We can see that among all
the seven features, MUDC achieves the highest accuracy at all di-
mensionality, and the accuracy does not change much with dimen-
sionality. UDC’s result is significantly better when the dimensional-
ity is increased. MFCC also achieves high accuracy, however, it is
sensitive to dimensionality. A two-sample t-test shows that MUDC
achieves significantly higher average accuracy than MFCC at all di-
mensionality, at the significance level of 0.005.

Figure 3 further compares the seven different features on audio
mixtures with different polyphony. For each feature and polyphony,
the best dimensionality of the feature was used. Again, the figure
shows the average results over 10 runs. From this figure, we can see
that OC and MFCC achieve the best performance when polyphony
is 1, which is in accordance with the results shown in Figure 1. The
highest accuracy is about 50%, which sets the upper bound for all
different polyphony settings in this cross-dataset instrument recogni-
tion experiment. For polyphony larger than 1, UDC and MUDC are
again always the best features. For polyphony of 2, 3 and 4, MFCC
performs almost as well as UDC and MUDC, despite that MFCC is
more sensitive to feature dimensionality as shown in Figure 2. How-
ever, with the increase of polyphony, the gap between UDC/MUDC
and MFCC becomes larger, indicating that the advantages of MUDC
and UDC can be better shown for more complex audio mixtures,
where satisfying source separation results for MFCC are more diffi-
cult to obtain. A two-sample t-test shows that MUDC outperforms
MFCC significantly at all polyphony larger than 1 while UDC out-
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Fig. 2. Average instrument classification accuracy (over 10 runs)
versus dimensionality of seven features, on 1000 random chords
with polyphony of 4 in each run.

performs MFCC for all polyphony larger than 2, at the significance
level of 0.005. Features of OC, RDC, and HS achieve better than
chance but significantly lower accuracies, while DC, as expected,
again achieves the chance accuracies. Classification here was per-
formed in each single frame using a single type of feature. Com-
bining results in different frames and using multiple features would
improve the performance, but exceeds the scope of this paper.
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Fig. 3. Average instrument classification accuracy (over 10
runs) versus polyphony of audio mixtures. For each feature and
polyphony, the best dimensionality was used.

6. CONCLUSIONS

We proposed a new cepstral representation called the uniform dis-
crete cepstrum (UDC) and its mel-scale variant MUDC to character-
ize the timbre of sound sources in audio mixtures. Compared to or-
dinary cepstrum and MFCC, they can be calculated from the mixture
spectrum directly without resorting to source separation. Compared
to discrete cepstrum and regularized discrete cepstrum, they are eas-
ier to compute and have better discriminative power. We showed in
experiments that they outperform the other five timbre features sig-
nificantly in instrument recognition from polyphonic mixtures when
the polyphony is high.
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