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ABSTRACT

In this paper, we propose a new approach for addressing music signal
separation based on the generalized Bayesian estimator with auto-
matic prior adaptation. This method consists of three parts, namely,
the generalized MMSE-STSA estimator with a flexible target signal
prior, the NMF-based dynamic interference spectrogram estimator,
and closed-form parameter estimation for the statistical model of the
target signal based on higher-order statistics. The statistical model
parameter of the hidden target signal can be detected automatically
for optimal Bayesian estimation with online target-signal prior adap-
tation. Our experimental evaluation can show the efficacy of the pro-
posed method.

Index Terms— Music signal separation, MMSE-STSA estima-
tor, NMF, higher-order statistics

1. INTRODUCTION

In recent years, music signal separation has been a very active area
of signal-processing research. This technique is suitable for many
potential applications, e.g., controlling each source in a music sig-
nal in interactive 3D audio systems and realizing automatic music
transcription for each instrument player.

Common methods used for audio signal separation, which were
mainly developed for speech enhancement, are nonlinear filtering al-
gorithms such as Wiener filtering (WF) [1] and the minimum mean-
square error short-time spectral amplitude (MMSE-STSA) estimator
[2]. In particular, the MMSE-STSA estimator and its extended al-
gorithms [3] are optimal Bayesian estimators based on the a priori
speech statistical model, resulting in a great improvement of sound
quality. However, these methods cannot be effectively applied to
music signals because it is difficult to deal with nonstationary inter-
ference signals. Also, the performance has strong dependence on
the selection of the a priori statistical model, which cannot be deter-
mined automatically.

As another means of signal separation, nonnegative matrix fac-
torization (NMF) has been actively studied [4, 5, 6, 7], in which an
input spectrogram is decomposed into the product of a spectral ba-
sis matrix and its activation matrix. In particular, supervised NMF
(SNMF) [8, 9, 10, 11], which includes a priori training with some
sample sounds of a target instrument, can extract the target sig-
nal to some extent. Although SNMF can deal with nonstationary
source signals, it has an inherent drawback that the decomposition
includes approximation only valid for linear combinations of spec-
trograms, and is not strictly valid for time- (or time-frequency-) do-
main complex-valued mixtures. In addition, it is difficult to imple-
ment the statistical model for time sequences.

2. CONTRIBUTION AND RELATION TO PRIOR WORK

Motivated by the complementarity between the properties of the
MMSE-STSA estimator and SNMF, in this paper, we propose a
new approach based on the generalized Bayesian estimator with
automatic prior estimation suitable for music signal separation. This
method consists of three parts, namely, the generalized MMSE-
STSA estimator [12, 13] with a flexible target signal prior, the
SNMF-based interference spectrogram estimator, and a new closed-
form parameter estimation for the statistical model of the target
signal time sequence based on higher-order statistics.

Compared with the conventional methods, the proposed method
has the following advantages: (I) The target signal extraction is car-
ried out via the generalized MMSE-STSA estimator so that the mix-
ing of the time-frequency-domain complex-valued signals can be
properly considered without any approximation. (II) Thanks to the
SNMF-based spectrogram estimator, we can dynamically estimate
the nonstationary power spectra of the interference signal. (III) The
statistical model of the hidden target signal can be detected automat-
ically only using the observable data, and can be used for optimal
Bayesian estimation with online target-signal prior adaptation.

3. CONVENTIONAL METHOD

3.1. Generalized MMSE-STSA estimator [12, 13]

We apply short-time Fourier analysis to the observed signal, which
is a mixture of target and interference signals, to obtain the time-
frequency-domain complex-valued signal

YR( f , τ)+iYI( f , τ)= (S R ( f , τ)+iS I ( f , τ))+(NR ( f , τ)+iNI ( f , τ)), (1)

where Y∗( f , τ) is the observed signal, S ∗( f , τ) is the target signal,
N∗( f , τ) is the interference signal, and ∗={R, I} denote the real and
imaginary parts of the signal, respectively. Also, f is the frequency
bin and τ is the frame index. The MMSE-STSA estimator provides
the amplitude spectrum of the target signal based on the MMSE cri-
terion under the assumption that the amplitude spectrum of the target
signal obeys a Rayleigh distribution. The generalized MMSE-STSA
estimator [13] provides the amplitude spectrum of the target signal
under the assumption of a chi distribution.

3.2. SNMF [9]

The mixture model of NMF approximately assumes the additivity of
amplitude (or power) spectrograms as√

Y2
R( f , τ)+Y2

I ( f , τ) ≈
√

S 2
R( f , τ)+S 2

I ( f , τ)+
√

N2
R( f , τ)+N2

I ( f , τ) .
(2)
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Fig. 1. Block diagram of proposed method.

SNMF [8, 9, 10] consists of two processes, namely, training of the
target sound and separation of the observed signal. In the training
process, the supervised bases are trained as a dictionary of the tar-
get sound. Then, the observed spectrogram is decomposed into the
target and other spectrograms using the supervised bases in the sep-
aration process.

4. PROPOSED METHOD

4.1. Generalized MMSE-STSA estimator

Figure 1 depicts a block diagram of the proposed method. In the next
part, we describe these processes in detail.

In the generalized MMSE-STSA estimator, the amplitude spec-
trum of the target signal is estimated on the basis of the MMSE cri-
terion under a certain target prior. The processed signal S̃ ( f , τ) via
the generalized MMSE-STSA estimator is given by

S̃ ∗( f , τ) = G( f , τ)Y∗( f , τ), (3)

G( f , τ) =

√
ν( f , τ)
γ( f , τ)

· Γ(ρ+0.5)
Γ(ρ)

· Φ(0.5−ρ, 1,−ν( f , τ))
Φ(1−ρ, 1,−ν( f , τ))

, (4)

where Γ(·) is the gamma function, Φ(a, b; k)=F1(a, b; k) is the con-
fluent hypergeometric function, and

ν( f , τ)= γ̃( f , τ)ξ̃( f , τ)
(
1 + ξ̃( f , τ)

)−1
. (5)

Here, ξ̃( f , τ) and γ̃( f , τ) are the estimated a priori and a posteriori
SNRs, respectively, which are defined as

ξ̃( f , τ) = αγ̃( f , τ − 1)G2( f , τ) + (1 − α)max[γ( f , τ) − 1, 0], (6)

γ̃( f , τ) =(Y2
R + Y2

I )/PÑ( f ), (7)

where PÑ( f ) is the estimated interference power spectral density and
α is the forgetting factor.

In the generalized MMSE-STSA estimator, the a priori statistical
model of the target signal amplitude spectrum is set to [14]

p(x) =
2
Γ(ρ)

(
ρ

E[x2]

)ρ
x2ρ−1exp

(
ρ

E [x2]
x2

)
, (8)

where p(x) is the p.d.f. of signal x in the amplitude domain and ρ
is the shape parameter. Here, ρ = 1 gives a Rayleigh distribution
that corresponds to a Gaussian distribution in the time domain, and
a smaller value of ρ corresponds to a super-Gaussian distribution
signal [15].

In the generalized MMSE-STSA estimator, to calculate γ̃( f , τ),
dynamic estimation is required if the interference signal is nonsta-
tionary, and estimation of the shape parameter ρ, which depends on
the type of target signal, is also required. To solve these problems,
we propose the use of SNMF as the interference signal estimator
and estimate the shape parameter ρ using higher-order statistics of
the target signal.

4.2. Interference signal estimation by SNMF

The following equation represents the decomposition model of
SNMF using the trained supervision components F( f , k):

A( f , τ) =
√

Y2
R( f , τ) + Y2

I ( f , τ)

≈
∑

k

F( f , k)V(k, τ) +
∑

n

H( f , n)U(n, τ), (9)

where F( f , k) is a nonnegative element of the supervised basis ma-
trix trained in advance, which involves spectral patterns of the target
signal as column vectors, V( f , k) is a nonnegative element of an ac-
tivation matrix that corresponds to F( f , k), H( f , n) represents a non-
negative element of the other basis matrix, which involves residual
spectral patterns that cannot be expressed by

∑
k F( f , k)V(k, τ), and

U(n, τ) is a nonnegative element of the activation matrix that cor-
responds to H( f , n). Moreover, k is the basis index of F( f , k), and
n is the basis index of H( f , n). The supervised basis matrix can be
trained using sample sounds of the target signal in the training pro-
cess. Hence, ideally,

∑
k F( f , k)V(k, τ) represents the target signal

components and
∑

n H( f , n)U(n, τ) represents the other components
different from the target signals after the decomposition.

We can use
∑

n H( f , n)U(n, τ) (or A( f , τ)−∑k F( f , k)V(k, τ)) as
the estimated amplitude spectrogram of the interference signal for
the generalized MMSE-STSA estimator. Thus, (

∑
n H( f , n)U(n, τ))2

is regarded as a good estimate of PÑ( f ) in (7) in the time-frequency
grids even if the interference sounds are nonstationary, which is com-
mon in actual music signals.

4.3. Target signal prior estimation

4.3.1. Shape parameter and kurtosis

Generally, we cannot obtain any a priori statistical model (8) from
the training data (e.g., several octave notes of the target instrument)
in SNMF because the statistical time structure is quite different from
that of the target signal S ∗( f , τ). Also, the target signal component∑

k F( f , k)V(k, τ) in SNMF cannot be used because its accuracy is
not sometimes enough. Therefore, we inversely calculate the pa-
rameter of the target amplitude spectrogram in a data-driven manner,
utilizing two observable statistics of the input signal and interference
spectrogram estimated by SNMF.

Regarding the chi distribution p(x) in (8), the shape parameter ρ
can be written as follows:

ρ = (µ4/µ
2
2 − 1)−1, (10)

where µ4/µ
2
2 is called the kurtosis and µm is the mth-order moment

of the amplitude spectrum. µm is defined as

µm =

∫ ∞

0
xm p(x)dx. (11)

From this relation, the shape parameter of the subjective target signal
can be estimated by obtaining its kurtosis value. In general, however,
it is difficult to directly estimate the kurtosis of such a hidden target
signal because of the contamination by additive interference signals.
In the following subsections, a new algorithm of target kurtosis es-
timation is proposed for estimating of the shape parameter of the
target p.d.f.

To cope with the mathematical problem that the mixing of the
target and interference signals is additive but generally their higher-
order moments are not additive, we introduce the cumulant, which
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holds the additivity for additive variables. Meanwhile, in transfor-
mation from a waveform to its amplitude spectrum, the exponentia-
tion operation is conducted but the cumulant does not have a straight-
forward relationship. In this case, we use the moment instead of the
cumulant. Thus, we propose to use moment-cumulant transforma-
tion.

4.3.2. Moment-cumulant transformation

In this section, we derive some formulas regarding moment-cumulant
transformation. They explicitly represent the relations between the
moment and cumulant in each order, which are useful for estimating
the kurtosis of the target amplitude spectrum.

First, the characteristic function ϕx(it) of the random variable x
is defined as

ϕx(it) =
∫ ∞

−∞
eitxP(x)dx. (12)

Then, we can define the mth-order moment µm(x) and the mth-order
cumulant κm(x) of x as follows:

µm(x) =
∂(m)ϕx(it)
∂it(m)

∣∣∣∣∣∣
t=0

, (13)

κm(x) =
∂(m) log ϕx(it)
∂it(m)

∣∣∣∣∣∣
t=0

. (14)

Next, polynomial forms of interrelations between the moment
and cumulant are derived below. From (13), the mth-order moment
µm(x) can be rewritten as

µm(x) =
∂(m) exp(log ϕx(it))

∂it(m)

∣∣∣∣∣∣
t=0

=
∑
π(m)

exp(|π(m)|)(log ϕx(it))
∏

B∈π(m)

[log ϕx(it))](|B|)

∣∣∣∣∣∣∣
t=0

=
∑
π(m)

∏
B∈π(m)

κ|B|(x), (15)

where we use a combinational form of Faà di Bruno’s formula,

∂(m) f (g(x))
∂x(m) =

∑
π(m)

f (|π(m)|)(g(x))
∏

B∈π(m)

[g(x))](|B|), (16)

where π(m) runs through the list of all partitions of a set of size m,
B ∈ π(m) means that B is one of the blocks into which the set is
partitioned, and |B| is the size of the set B.

In the same manner, from (14), the mth-order cumulant κm(x) is
given by

κm(x) =
∑
π(m)

log(|π(m)|)(ϕx(it))
∏

B∈π(m)

[ϕx(it))](|B|)

∣∣∣∣∣∣∣
t=0

=
∑
π(m)

(−1)|π(m)|−1(|π(m)| − 1)!
∏

B∈π(m)

µ|B|(x). (17)

4.3.3. Estimation of target signal kurtosis from observations

In this section, we estimate the amplitude-domain kurtosis of the
target signal. First, we express the target kurtosis by using complex-
valued variables as intrinsic parameters. After that, we show that the
kurtosis can be represented in the amplitude-spectrogram domain.
Hereafter, we ignore the indexes f , τ, k, and n of each signal. Only
the statistics of (YR + iYI) and (N2

R + N2
I )1/2 obtained by SNMF are
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Fig. 2. Scores of each part.

observable, and (S 2
R + S 2

I )1/2 is a hidden value to be estimated. First,
we assume to obtain the following mth-order moments from the data:

µm(YR) = E[Ym
R ], (18)

µm(YI) = E[Ym
I ], (19)

µm(NR) = E[Nm
R ], (20)

µm(NI) = E[Nm
I ]. (21)

Generally, the cumulant has the property of additivity for additive
independent variables, i.e., κm(a + b) = κm(a) + κm(b). Using this
relation and (17), we can estimate the cumulant of the real part of
the target signal S R=YR − NR as

κm(S R) = κm(YR) − κm(NR)

=
∑
π(m)

(−1)|π(m)|−1(|π(m)| − 1)!
∏

B∈π(m)

µ|B|(YR)

−
∑
π(m)

(−1)|π(m)|−1(|π(m)| − 1)!
∏

B∈π(m)

µ|B|(NR). (22)

The statistics of the squared variable of S R is given by

µm(S 2
R) = µ2m(S R) =

∑
π(2m)

∏
B∈π(2m)

κ|B|(S R). (23)

In the same manner, we can estimate the statistics of the squared
variable of S I. Given µm(S 2

R) and µm(S 2
I ), we can calculate the cu-

mulant of the power spectrum S 2
R + S 2

I as

κm(S 2
R + S 2

I ) = κm(S 2
R) + κm(S 2

I )

=
∑
π(m)

(−1)|π(m)|−1(|π(m)| − 1)!
∏

B∈π(m)

µ|B|(S 2
R)

+
∑
π(m)

(−1)|π(m)|−1(|π(m)| − 1)!
∏

B∈π(m)

µ|B|(S 2
I ), (24)

and the mth-order moment of the power spectrum is given by

µm(S 2
R + S 2

I ) =
∑
π(m)

∏
B∈π(m)

κ|B|(S 2
R + S 2

I ). (25)

Furthermore, the mth-order moment of the amplitude spectrum (S 2
R+

S 2
I )1/2 is

µm((S 2
R + S 2

I )
1
2 ) = µ m

2
(S 2

R + S 2
I ). (26)

Using (18)–(26), we can estimate the resultant kurtosis of the target
amplitude spectrum as

kurttarget =
µ4((S 2

R + S 2
I )

1
2 )

µ2
2((S 2

R + S 2
I )

1
2 )

=
N (µm(YR), µm(YI), µm(NR), µm(NI))
D (µm(YR), µm(YI), µm(NR), µm(NI))

, (27)
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Fig. 3. Average SDRs for extraction of (a) clarinet signal, (b) oboe signal, and (c) cello signal for each method.

where

N (µm(YR), µm(YI), µm(NR), µm(NI))
= µ4(YR) + µ4(YI) − µ4(NR) − µ4(NI)

+ 6µ2
2(NR) + 6µ2

2(NI) + 2µ2(YR)µ2(YI) + 2µ2(NR)µ2(NI)
− 6µ2(YR)µ2(NR) − 6µ2(YI)µ2(NI)
− 2µ2(YR)µ2(NI) − 2µ2(YI)µ2(NR), (28)

D (µm(YR), µm(YI), µm(NR), µm(NI))

= µ2
2(YR) + µ2

2(YI) + µ2
2(NR) + µ2

2(NI) + 2µ2(YR)µ2(YI)
− 2µ2(YR)µ2(NR) − 2µ2(YR)µ2(NI) − 2µ2(YI)µ2(NR)
− 2µ2(YI)µ2(NI) + 2µ2(NR)µ2(NI). (29)

Next, the sums of the 4th-order moments µ4(YR) + µ4(YI) and
µ4(NR)+µ4(NI) are represented by the amplitude-domain kurtosis of
the observed signal spectrum and the interference signal spectrum as

µ4(YR) + µ4(YI) =
(
µ2

2(YR) + µ2
2(YI) + 2µ2(YR)µ2(YI)

) µ4(A)

µ2
2(A)

− 2µ2(YR)µ2(YI), (30)

µ4(NR) + µ4(NI) =
(
µ2

2(NR) + µ2
2(NI) + 2µ2(NR)µ2(NI)

) µ4 (
∑

nHU)

µ2
2 (

∑
nHU)

− 2µ2(NR)µ2(NI). (31)

If we assume that the real and imaginary parts are i.i.d., µ2(YR)
equals µ2(YI) and µ2(NR) equals µ2(NI). Under this assumption and
(15) and (17), we obtain the following relation for the SNMF output:

µ2(YR) = µ2(YI) =
1
2
µ2(A), (32)

µ2(NR) = µ2(NI) =
1
2
µ2(

∑
nHU). (33)

Finally, using (30)–(33), (27) is rewritten as follows:

kurttarget =
µ4(A)−µ4 (

∑
n HU)+4µ2

2(
∑

n HU)−4µ2(A)µ2(
∑

n HU)
µ2

2(A)+µ2
2(
∑

n HU)−2µ2(A)µ2(
∑

n HU)
.

(34)

The shape parameter of the target p.d.f. can be estimated using (10)
and (34). Note that all the estimates can be obtained from the result
of SNMF without using any waveforms; this implies a good appli-
cability to the combination with SNMF.

5. EXPERIMENTS

5.1. Experimental conditions

In this experiment, we compared four methods, i.e., simple SNMF [9],
WF with SNMF-based interference estimation (WF+SNMF) [16,
17, 18, 19], the MMSE-STSA estimator with SNMF-based in-
terference estimation (MMSE-STSA+SNMF), and the proposed
method. WF and the MMSE-STSA estimator utilized the interfer-
ence spectrogram estimated by SNMF. We used three instrumental
signals, namely, an oboe, clarinet, and cello, as the target sounds
(each melody part is depicted in Fig. 2). These signals were arti-
ficially generated by a MIDI synthesizer, and the observed signals
were produced by mixing two sources selected from three signals
with the same power. In estimation of the interference signal using
SNMF, we used the same MIDI sounds of the target instruments as
supervision for the training process. The training sounds contained
two octave notes that cover all the notes of the target signal in the
observed signal. The spectrograms were computed using a 92-ms-
long rectangular window with a 46-ms overlap shift. Moreover, the
number of trained bases was 100 and the number of other bases was
50. In the proposed method, the forgetting factor α and amplitude
compression parameter β were set to 0.1 and 1.0, respectively.

5.2. Experimental results and discussion

We used the signal-to-distortion ratio (SDR) defined in [20] as the
evaluation score. SDR indicates the overall quality of the separated
target sound, showing high separation and less artificial distortion.

Figure 3 shows the average SDRs for each method and each tar-
get instrument. From the SDR results, we can confirm that the sep-
aration performance of the proposed method is better than those of
the other methods. This result indicates the efficacy of introducing
the flexible a priori statistical model of the target signal. The sim-
ple MMSE-STSA estimator also assumes the fixed a priori model of
the Gaussian distribution but the assumption is not appropriate for a
music target signal. In contrast, the proposed method almost always
uses more spiky p.d.f. (ρ < 1), which enhances the true sparseness
of the target music signal.

6. CONCLUSIONS

In this paper, we propose a new approach for addressing music sig-
nal separation based on the generalized Bayesian estimator with au-
tomatic prior adaptation. From the experimental evaluation, it is
found that the proposed method outperforms competitive methods,
namely, simple NMF, WF, and the MMSE-STSA estimator with a
fixed Gaussian prior.
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