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ABSTRACT
This paper examines complex non-negative matrix factorization
(CMF) as a tool for separating overlapping partials in mixtures of
harmonic musical sources. Unlike non-negative matrix factoriza-
tion (NMF), CMF allows for the development of source separation
procedures founded on a mixture model rooted in the complex-
spectrum domain (in which the superposition of overlapping sources
is preserved). This paper introduces a physically motivated phase
constraint based on the assumption that the source’s pitch is suffi-
cient in specifying the phase evolution of the harmonics over time,
uniting sinusoidal modelling of acoustic sources with the CMF anal-
ysis of their spectral representations. The CMF-based separation
procedure, armed with this novel phase constraint, is demonstrated
to offer a superior performance to NMF when employed as a tool for
separating overlapping partials in the acoustic test cases considered.

Index Terms— non-negative matrix factorization, complex
non-negative matrix factorization, phase constraints, source separa-
tion, harmonic resolution

1. INTRODUCTION

Non-negative matrix factorization (NMF) [1] has been demonstrated
to be an effective tool for performing single-channel musical source
separation (SC-MSS) when applied to a time-frequency matrix rep-
resentation (e.g., a magnitude/power spectrogram) of a musical mix-
ture [2]. This approach, however, incorrectly models the spectro-
gram, X , of the mixed sources as the sum of the spectrograms, Sp,
of the unmixed sources, disregarding any phase discrepancies be-
tween the overlapping spectra. This inequality can be expressed as
follows:

X = |X| = |
P∑
p=1

Sp| 6=
P∑
p=1

|Sp| =
P∑
p=1

Sp (1)

Here, X and Sp represent the complex valued Short-Time Fourier
Transform (STFT) of the mixture and pth source (of a P source
mixture), respectively. It is recognized in the literature, notably [3],
that this mixture model assumption limits the use of NMF as a tool
for resolving the amplitudes of the unmixed sources in regions of
high-energy spectral overlap, for which consideration of the phase
difference between overlapping sources is essential.

Complex Matrix Factorization (CMF) [4] was proposed in 2009
to address this shortcoming of NMF by incorporating the previously
excluded phase information directly into the factorization frame-
work. To date, nearly all research concerning CMF-based single-
channel source separation deals exclusively with acoustic mixtures

of speech samples [4], [5], [6], [7]. There exists a substantial gap
in the literature investigating the use of CMF as a tool for SC-MSS
(note that [8], [9], and [10], do examine the use of CMF applied
to musical mixtures but in the context of multi-channel source sep-
aration). In this paper, we specifically consider the task of sepa-
rating overlapping partials in single-channel mixtures of harmonic
musical sources using CMF, a problem which could not be properly
addressed using the previously established NMF-based source sepa-
ration procedures. Moreover, recent literature [6] suggests that one
of the largest areas of improvement for the CMF algorithm is in the
estimation of the phase parameter. The work presented here attempts
to improve upon the phase estimation of the overlapping partials in
mixtures of harmonic musical sources through the development of a
physically motivated phase evolution constraint.

The remainder of the paper is organized as follows: Section 2 re-
views the relevant background literature concerning NMF and CMF.
Section 3 outlines the newly developed phase evolution constraint.
Section 4 presents the results of two experiments conducted as a
means of comparing NMF to CMF under the newly proposed phase
constraint. Finally, Section 5 concludes and discusses future direc-
tions.

2. BACKGROUND

2.1. Non-negative Matrix Factorization

NMF consists of approximately factorizing a given N × M non-
negative data matrix, X , into an N ×K non-negative basis matrix,
W , andK×M non-negative activation matrix,H . NMF is typically
expressed as follows:

Given : X ∈ RN×M≥0 and K ∈ N>0

Factorize : X ≈ X̂ = WH

Subject to : W ∈ RN×K≥0 and H ∈ RK×M≥0

(2)

As was first examined in [11], when the data matrix, X , corre-
sponds to a non-negative spectrogram of a musical passage, the ideal
non-negative factorization results in matrix factor, W, whose column
vectors correspond to spectral templates of the generative musical
structures (e.g., sustained tones, transients, and noise). These spec-
tral profiles combine in a purely additive fashion, according to the
non-negative temporal activations, specified by the rows of H , to
form an approximation of the original time-frequency representation
of the musical passage.

For the purposes of this paper we will specifically focus on
sparse NMF, as specified by the following optimization problem:
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Given : X ∈ RN×M≥0 and K ∈ N>0

Minimize :
1

2

∑
n,m

|[X]n,m − [X̂]n,m|2 + λ
∑
k,m

|[H]k,m|g

Subject to :
∑
n

[W ]2n,k = 1 (∀k = 1, ...,K), W ∈ RN×K≥0

H ∈ RK×M≥0

(3)

The first term in the minimization of Equation 3 corresponds to the
distance induced by the square of the Frobenius norm, a quantifi-
able measure for the quality of approximation of X̂ = WH to X ,
whereas the second term corresponds to the sparsity factor, penaliz-
ing larger values of the elements of H. Here, λ is a weighting param-
eter corresponding to the relative importance of the sparsity factor on
the overall optimization and g is a parameter influencing the shape
of the sparsity distribution. A solution to the optimization problem
of Equation 3 can be found in [12].

2.2. Complex Non-negative Matrix Factorization

CMF can be defined by the following optimization problem:

Given : X ∈ CN×M and K ∈ N>0

Minimize :
1

2

∑
n,m

|[X]n,m − [X̂]n,m|2 + λ
∑
k,m

|[H]k,m|g

Subject to :
∑
n

[W ]n,k = 1 (∀k = 1, ...,K), W ∈ RN×K≥0

H ∈ RK×M≥0 and Φ ∈ RN×K×M

(4)

where [X̂]n,m =
K∑
k=1

[W ]n,k[H]k,m exp(i[Φ]n,k,m). Note that the

inclusion of the phase term, exp(i[Φ]n,k,m) prevents CMF from be-
ing expressed as a true factorization. However, it is referred to as
such due to the similarities in structure shared with NMF. A solution
to the optimization problem of Equation 4 can be found in [4], and
an implementation of the solution can be found online at [13].

3. PHASE EVOLUTION CONSTRAINT

3.1. Phase Evolution Assumptions

The following model/assumptions guided the development of the
phase evolution constraint. Note that similar assumptions are also
adopted in the work of [3].

A:1 Assume that the fundamental frequency of each source is
known.

A:2 Assume that each source is well modelled as a sum of sinu-

soids: s̃p(t) =
Rp∑
r=1

Ap,r exp(i(2πf0prt + φ0p,r )), where f0p

corresponds to the fundamental frequency (in Hz) of the pth

source, r corresponds to the harmonic number starting from
r = 1 (the fundamental) to Rp (the total number of harmonics
considered for source p), where f0pRp <

Fs
2

, Ap,r and φ0p,r

corresponds to the amplitude and initial phase, respectively, of
the rth harmonic of the pth source, and t corresponds to the
continuous time variable.

A:3 Assume that the energy of a given harmonic does not extend
beyond the frequency bins which fall under the main lobe of
the Fourier transform of the analysis window centered about
the frequency of that harmonic.

A:4 Assume that the number of sources is known and that only one
component is set to be extracted per source (i.e., K = P ).

3.2. Phase Evolution Cost Function

Consider the following form of the STFT:

[X]n,m =

Ñ−1∑
l=0

x(l +mL)w(l) exp(
−i2πln
Ñ

) (5)

where w is a suitably chosen window function of length Ñ , where
Ñ = 2(N − 1) and L is the frame shift in samples. Applying
this form of the STFT to the mixture of sources modelled according
to A:2, while assuming A:1 - A:4, we arrive at the proposed phase
evolution cost function:

C(Φ) =
∑

n,p,r,m

1Np,r | exp(i[Φ]n,p,m)

− exp(i[Φ]n,p,m−1) exp(i2πf0prLT )|2
(6)

where T represents the sampling period, Np,r is the set of all fre-
quency bins, n, which fall under the main lobe of the Fourier trans-
form of the analysis window centered about the frequency f0pr and
1Np,r is an indicator function specifying the membership of the nth

frequency bin to the set Np,r . Intuitively, minimizing the cost func-
tion presented in Equation 6 is equivalent to specifying that the phase
of the harmonics of the sources evolve according to the sinusoidal
model assumed in A:2.

3.3. CMF under Phase Evolution Constraints

The new CMF model under phase evolution constraints can now be
stated as follows:

Given : X ∈ CN×M , P ∈ N>0 and f0p(p = 1...P )

Minimize :
1

2

∑
n,m

|[X]n,m − [X̂]n,m|2 + λ
∑
p,m

|[H]p,m|g

+ σ
∑

n,p,r,m

1Np,r | exp(i[Φ]n,p,m)

− exp(i[Φ]n,p,m−1) exp(i2πf0prLT )|2

Subject to :
∑
n

[W ]n,p = 1 (∀p = 1, ..., P ), W ∈ RN×P≥0

H ∈ RP×M≥0 and Φ ∈ RN×P×M

(7)

where σ is a weighting parameter corresponding to the relative im-
portance of the phase evolution cost function on the overall optimiza-
tion. The form of the phase evolution cost function is such that the
auxiliary function optimization techniques, as employed in [4], [6]
and [7], are not required. However due to lack of continuity, conver-
gence of the optimization algorithm is not guaranteed. In practice,
however, convergence of the optimization algorithm was observed
for the experiments described in Section 4. The CMF algorithm,
with the inclusion of the phase evolution constraint, is described in
Algorithm: 1.
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4. EXPERIMENTATION AND RESULTS

Two experiments were conducted to investigate the behaviour of
CMF with the newly proposed phase evolution constraint as a tool
for harmonic resolution of overlapping musical sources. Two acous-
tic piano note samples (D4, B4) and one classical guitar note sample
(C4) were considered. The three recordings were taken from [14],
down sampled to a rate of Fs = 11025 Hz and truncated in time so
that each sample was exactly one second long. Both mixtures were
three seconds long and consisted of a piano note played in isolation
(either D4 or B4) followed by the (C4) guitar note played in isolation
followed by both the guitar note and the chosen piano note played
simultaneously (100% overlap). Magnitude spectrograms were cre-
ated for each source using a 46 ms long modified Hann window, as
defined in [15], and an 11 ms long frame shift. Estimates for the fun-
damental frequencies of the C4 guitar source and the D4/B4 piano
sources were taken to be C4: 261.63 Hz, D4: 293.66Hz, and B4:
493.88Hz. As such, given the size and shape of the analysis window
used, strong spectral overlap exists between the first harmonic of the
C4 guitar source and the first harmonic of the D4 piano source. Sim-
ilarly, strong spectral overlap exists between the second harmonic of
the C4 guitar source and the first harmonic of the B4 piano source.
By design, both mixtures provided good test cases in which a strong
violation of the NMF mixture model assumption exists. Source sep-
aration was performed using either NMF or CMF to decompose the
spectrograms of each mixture. The number of extracted components
was set to K = P = 2, one for each source, and the sparsity pa-
rameters were set to λ = 0.01 and g = 1. The source to distortion
ratio (SDR), source to interference ratio (SIR), and source to arti-
fact ratio (SAR) performance measures [16] were used as a means
of quantifying the overall separation performance.

4.1. Experiment 1

The first experiment examined the performance of the CMF-
based source separation procedure for varying degrees of the
phase evolution weight, σ. The value of the phase evolution
weight was set to be a function of [W ]n,p and [H]p,m as follows:
σ(n, p,m) = σ̂[W ]n,p[H]p,m where σ̂ varied within the range of:
σ̂ ∈ {0, 0.001, 0.01, 0.1, 1}. Although defining σ in this way is
not theoretically justified as it introduces a dependence on [W ]n,p,
and [H]p,m, which was not accounted for during the optimization of
the phase evolution cost function, this definition of σ allowed for a
normalization of the terms found within the phase parameter update
(providing a more intuitive weighting of the phase evolution con-
straint’s contribution to the phase update), and was observed to yield
superior results in practice. For each level of the modified phase
evolution weight, 40 source separation tasks were performed (2 note
pairings × 20 random initializations). The factorizations were set to
terminate after 100 iterations of the algorithm. The results of the first
experiment are represented in the box-plots of Figure 1. Each box
plot is made up of a central line indicating the median of the data,
upper and lower box edges indicating the 25th and 75th percentiles,
vertical whiskers extending to the minimum and maximum extrema,
and red stars indicating the outliers. A data point is considered to be
an outlier if it lies beyond 1.5 times the interquartile range, either be-
low or above the first and third quartiles, respectively. Each box-plot
summarizes the pooled performance measures obtained from each
source, for both mixtures over all 20 trials. The results indicate an
increase in median SDR, SIR, and SAR performance measures and

Algorithm 1 CMF with Phase Evolution Constraint

Input: X ∈ CN×M and P ∈ N>0 and f0p(p = 1...P )
Output: W,H,Φ s.t

[X]n,m ≈
P∑
p=1

[W ]n,p[H]p,m exp(i[Φ]n,p,m)

W ∈ RN×P≥0 , H ∈ RP×M≥0 and Φ ∈ RN×P×M

Initialize W , H , Φ, such that W ∈ RN×P>0 , H ∈ RP×M>0 and
Φ = X

|X|
while stopping criteria not met do

Compute B

[B]n,p,m =
[W ]n,p[H]p,m∑
p

[W ]n,p[H]p,m

Compute X̄

[X̄]n,p,m = [W ]n,p[H]p,m exp(i[Φ]n,p,m)

+[B]n,p,m([X]n,m − [X̂]n,m)

Compute H̄

[H̄]p,m = Hp,m

Compute Φ

[Φ]n,p,m = Arg

(
[X̄]n,p,m

[B]n,p,m
[W ]n,p[H]p,m

+σ
∑
r

1Np,r

(
exp(i[Φ]n,p,m−1) exp(i2πf0prLT )

+ exp(i[Φ]n,p,m+1) exp(−i2πf0prLT )

))
Compute W

[W ]n,p =

∑
m

[H]p,m<[(
X̄n,p,m

[B]n,p,m
) exp(−i[Φ]n,p,m)]

(
∑
m

[H]2p,m)( 1
[B]n,p,m

)

Project W onto non-negative orthant

Normalize [W ]n,p =
[W ]n,p∑
n

[W ]n,p

Compute H

[H]p,m =

∑
n

[W ]n,p<[(
X̄n,p,m

[B]n,p,m
) exp(−i[Φ]n,p,m)]

(
∑
n

[W ]2n,p)( 1
[B]n,p,m

)+λg([H̄]p,m)g−2

Project H onto non-negative orthant

iter = iter + 1
end while

a decrease in spread of the results for higher values of σ̂, suggesting
a positive trend in separation performance given a stronger presence
of the phase evolution constraint. Specifically, an increase in median
SDR, SIR, and SAR of 3.7dB, 9.2dB, and 2.6dB, respectively, was
observed when using a phase evolution weight of σ̂ = 0.1 compared
to having the phase evolution weight set to σ̂ = 0. Based on these
results, the value of σ̂ was set as 0.1 for the second experiment.

4.2. Experiment 2

A second experiment was conducted to compare the NMF-based and
the CMF-based separation procedures. Three variants of CMF were
considered: 1) CMF(EP) (without the phase evolution constraint),
where EP stands for “estimated phase”; 2) CMF(MP) (with the phase
evolution constraint), where MP stands for “modelled phase”; and
3) CMF(OP) (in which the phase is updated according to the true
phase of the unmixed sources), where OP stands for “oracle phase”.
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Fig. 1: SDR(left), SIR(center), SAR(right) measures obtained for
the CMF-based separation procedures as a function of σ̂.

The second experiment was similar in nature to the first experiment,
however, instead of varying the phase evolution constraint weight,
the matrix factorization techniques varied. The results of the second
experiment are summarized in Figure 2. The box-plots indicate that
the CMF(MP)-based separation procedure produced an increase in
median SDR, SIR, and SAR of 2.8dB, 10.5dB, and 0.63dB, respec-
tively, over the NMF-based separation procedure. The CMF(MP)-
based separation procedure produced an increase in median SDR,
SIR, and SAR over the CMF(EP)-based separation procedure in ac-
cordance with the results obtained in the first experiment. The spread
of the results for the CMF(MP)-based separation procedures was
also indicative of a better overall separation performance compared
to the NMF-based and the CMF(EP)-based separation procedures.
The CMF(MP)-based separation procedure was surpassed in perfor-
mance only by the CMF(OP)-based separation procedure.

Further analysis was conducted to investigate how each factor-
ization method was able to resolve the spectral magnitudes of the
source estimates from the mixtures. Magnitude profiles were created
by multiplying the spectral templates, which resulted in the highest
SDR performance measure for each matrix factorization-based sepa-
ration procedures, by their corresponding activation weights. Figure
3, compares the spectral magnitude of the NMF-based, CMF(EP)-
based, CMF(OP)-based, and CMF(MP)-based source estimates for
the (B4) piano source across the 24th frequency bin (corresponding
to the overlapping first harmonic of the (B4) piano source and second
harmonic of the (C4) guitar source) against the true magnitude spec-
trum of the unmixed piano source, and the mixture of the sources.
Also included is the magnitude spectrum of the true unmixed guitar
source and the mixture that would occur if the first harmonic of both
sources were in phase (for which the NMF mixture model assump-
tion would hold true). For clarity, only the magnitude profiles corre-
sponding to the last second of the mixture are depicted in Figure 3.
A noticeable improvement is observed in the spectral magnitude of
the (B4) piano source estimate using the CMF(MP)-based separation
procedures over the NMF-based and the CMF(EP)-based separation
procedures both in terms of proximity to the spectral magnitude of
the true piano source and in terms of a reduction of the oscillating
amplitude effect due to phase discrepancies present over time.

5. CONCLUDING REMARKS

In this paper, we examined CMF as a tool for separating overlap-
ping partials in mixtures of harmonic musical sources. A novel
phase evolution constraint was developed and demonstrated to of-
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Fig. 2: SDR(left), SIR(center), SAR(right) measures obtained for
the separation procedures as a function of the factorization method
employed.
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Fig. 3: Magnitude profile analysis of the (B4) piano source estimate
across the 24th frequency bin (corresponding to the overlapping first
harmonic of the (B4) piano source and second harmonic of the (C4)
guitar source).

fer an improvement in separation performance when incorporated
into the CMF framework. Two experiments were conducted, inves-
tigating the behaviour of a CMF-based separation procedure, both
with and without the proposed phase evolution constraint. It was ob-
served that by applying CMF(MP) to mixtures containing regions of
strong harmonic overlap between sources, the resolved magnitude of
the extracted source more closely matched the true magnitude of the
unmixed source, outperforming both the NMF-based and CMF(EP)-
based separation procedures.

Future research will focus on the improvement of the proposed
phase constraint to include a more theoretically justified amplitude-
based weighting, and a convergence guaranteed update algorithm.
Additionally, a relaxation of the assumptions upon which the phase
evolution constraint was developed will also be subject to further
investigation.
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