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ABSTRACT

In the tradition of the spectral envelope estimation of pe-

riodic sounds, we propose a new accurate method, called

True Discrete Cepstrum. Solving a constrained optimization

problem, it provides a smooth envelope which fits exactly the

given peak values. Moreover, based on the auditory masking,

we propose a release of the constraint which improves the

smoothness, without perceptual change. Contrarily to some

other methods, the parametrization of this method is easy,

and it gives a complete control of the maximal deviation of

the spectral envelope from the peak values. The benefit of

this new method is illustrated and an evaluation procedure

validates it with a comparison with some other methods.

Index Terms—Acoustic signal processing, Spectral en-

velope estimation, Music sound analysis-synthesis

1. INTRODUCTION

For the treatment of the sine part of musical sounds, a popu-

lar method consists of the factorization of a given spectrum

into the product of a source, discrete and spectrally flat, and a

continuous spectral envelope, cf. e.g. [1]. With this Source-

Filter principle the estimation of the spectral envelope is a

crucial task because it is generally considered as one of the

determining factors of the timbre of sounds.

Using the autocorrelation sequence of the original signal,

the Linear Prediction Coding is a well-known method. Un-

fortunately, this method is highly biased with discrete spectra,

because the estimated spectral envelope is attracted by the val-

leys between the peaks, cf. e.g. [2].

In [3], the Discrete All-Pole method (DAP) is proposed.

Starting from the peak values, frequency positions and magni-

tudes, the Itakura-Saito distance is iteratively minimized. The

obtained spectral envelope is then given by an autoregressive

model which roughly passes through the peaks. Although this

method is well adapted for speech, the all-pole modeling is

not suitable for musical tones in a general case. See Fig. 1

where the order 14 is chosen according to Fig. 5.

This work is funded by the Marie Curie Action project ESUS 299781.

The True Envelope of [4, 5] is another approach which

consists of an iterative cepstral liftering starting from the DFT

spectrum of the original sound. Nevertheless, knowing the

peak values, the computation of the input spectrum is a sen-

sitive task because the valleys between the peaks make the

convergence slower. An example is given in Fig. 1, where the

optimal order 21 is chosen. The obtained spectral envelope

is accurate, but we do not control the peak fitting with preci-

sion, especially in the case of inharmonic sounds, and some

undesirable artifacts can appear as shown at high frequencies.

In [6], Galas and Rodet proposed the Discrete Cepstrum

which consists of a least mean square approximation to iden-

tify the spectral envelope using the peak values and a cepstral

model. Nevertheless, as illustrated in Fig. 2, with low or-

ders the estimation is inaccurate, and with higher orders the

obtained spectral envelope passes close to the spectral peaks,

but some conditioning problems appear as shown at high fre-

quencies. To solve this problem, in [7] Cappé et al. regu-

larized the criterion using a penalty functional which aims to

improve the smoothness of the spectral envelope. Even if the

smoothness is significantly improved, as shown in Fig. 2, the

approximation is less accurate at the spectral peaks, and there

is a difficult choice of the regularization factor.
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Fig. 1. Illustration of the DAP method and the True Envelope.
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Fig. 2. Illustration of the Discrete Cepstrum.
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In the present work, inspired by the regularized Discrete

Cepstrum, we propose a new and simple method which pro-

vides a smooth cepstral model passing exactly through the

peak values and which has no sensitive parameter. More-

over, even if the smoothness is naturally better, we can release

the equality constraint by controlling the peak deviation. We

introduce here a new idea to define an inequality constraint

which takes into account the auditory perception.

This article is organized as follows. In Sec. 2, we present

some details of the Discrete Cepstrum method [6], and of its

regularization. Then, we present the proposed method in Sec.

3. In Sec. 4, an example of interpolation is given and an

evaluation procedure is presented. Finally, Sec. 5 concludes

this paper and opens some perspectives.

2. STANDARD DISCRETE CEPSTRUM

2.1. Cepstral model and approximation

The desired spectral envelope |H(ω)| is modeled by its real

cepstral model which follows, cf. e.g. [8]:

log(|H(ω)|) = c0 + 2

P−1
∑

p=1

cp cos(pω), (1)

where the cp’s are the cepstral coefficients, ω is the adimen-

sional radial frequency in [rad], ω = 2πf/Fs with Fs the

sampling rate in [Hz], and P is the order of the cepstrum.

Given the M peaks of X(ω), with frequencies ωm and mag-

nitudes am = |X(ωm)|, the spectral envelope is known at

ω = ωm. Then the cepstral representation of |H(ω)| is ob-
tained by minimizing the criterion

ρ =
M
∑

m=1

(

log(|H(ωm)|)− log(am)
)2

. (2)

With P < M , more equations than variables, the Discrete

Cepstrum method of Galas and Rodet [6] gives the optimal

cepstral coefficients by the Least Mean Square solution:

C = (ΦTΦ)−1ΦTA,

where C is the column vector of the cepstral coefficients,

Cp = cp−1, ∀p ∈ [1, P ], Φ is the (M ×P ) matrix of the cep-

stral model of (1), Φm,p = wp cos((p − 1)ωm) with w1 = 1
and wp = 2 for p > 1, and A is the vector of the logarithm of

the measured values of the spectral envelope,Am = log(am).
As previously illustrated in Fig. 2, for low orders the es-

timation is inaccurate, and although it is better for higher or-

ders, undesirable artifacts appear because of the poor condi-

tioning of ΦTΦ. Note that for Fig. 2, M = 19 harmonics,

P = 6 for the low order, and P = 17 for the high order.

To improve the conditioning of the problem, a simple so-

lution is the regularization of the matrix ΦTΦ, adding arbi-

trary and small values on the diagonal for example. In the

next section, an interesting regularization is defined to guar-

antee the smoothness of the estimated spectral envelope.

2.2. Regularization

In [7], Cappé et al. define the new cost function ρr = ρ +
λP where P is a penalty function measuring the smoothness

of the spectral envelope and λ a small regularization factor.

A convenient definition of P is the squared sum of the k-th
derivative of log |H(ω)|, cf. e.g. [9]:

P
△
=

1

2π

∫ π

0

(

dk

dωk
log |H(ω)|

)2

dω. (3)

Smaller is P and smoother is log(|H(ω)|), then its min-

imization optimizes the smoothness of the desired spec-

tral envelope. Using the cepstral representation of |H(ω)|,
cf. (1), it is easy to prove that P = CT∆C with ∆ =
diag([0, 12k, 22k, . . . (P − 1)2k]). Now, the minimization of

ρr is obtained by

C = (ΦTΦ+ λ∆)−1ΦTA.

As illustrated in Fig. 2, this regularization significantly

improves the regularity of the estimated spectral envelope.

Nevertheless we can notice that the input peaks are not well

fitted anymore; it is not surprising because of the regulariza-

tion. Moreover, the choice of the regularization factor is a

difficult choice. For this estimation, M = 19, P = 17 and

λ = 10−4. This value of λ has been manually chosen in order

to have an obviously good compromise between smoothness

and peak fitting; note that this choice is difficult and not auto-

matic.

3. ACCURATE CEPSTRAL MODELING

3.1. True Discrete Cepstrum

As noted previously, when the cepstral order gets closer to the

number of peaks, the Discrete Cepstrum provides an accurate

fitting of the peaks. In the critical case P = M , if Φ is not

singular, we get C = Φ−1A, which provides an exact solu-

tion of A = ΦC. Naturally in this case, the observed border

effects of conditioning are worse than previously.

Using a cepstral order P > M , we get an underdeter-

mined problem which has an infinite number of exact so-

lutions if rank(Φ) = M . The key idea of this work is to

choose the solution that maximizes the smoothness of H(ω)
using (3). Consequently, the proposed True Discrete Cep-

strummethod consists of solving the constrained optimization

problem given by

min
C∈RP

(

CT∆C
)

subject to ΦC = A. (4)

In other words, if rank(Φ)=M , the solutions of A=ΦC
live in a subspace with dimension P−M which is the number

of degrees of freedom. In Sec. 3.2, using a change of variable,

we minimize P = CT∆C in the subspace of the solutions.

First the equality constraint guarantees that the chosen solu-

tion perfectly fits the peaks, second the minimization guaran-

tees the smoothness of the estimated spectral envelope.
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3.2. Solving method

The optimization problem of (4) is a constrained linear least

square problem and has been treated in mathematics, cf. e.g.

[10]. We here summarize the solving method.

The solving takes benefit of the QR factorization, cf. e.g.

[11], which is commonly implemented in most of scientific

computation softwares. With P >M , if rank(Φ) = M which

is validated at least for harmonic signals, the matrix Φ is writ-

ten as follows

ΦT = QR =
[

Q1 Q2

]

[

R1

0

]

= Q1R1, (5)

with R1 a (M×M) upper triangular matrix, 0 the ((P−M)×
M) null matrix, Q a (P×P ) orthogonal matrix decomposed

into Q = [Q1, Q2] where Q1 and Q2 have respectively M
and P −M columns. Writing the vector C of the cepstral

coefficients into the basis of matrix Q, we get the following

change of variables:

C = Qx =
[

Q1 Q2

]

[

β
µ

]

= Q1β +Q2µ. (6)

Since the columns of Q2 form a basis of the kernel of Φ,
ker(Φ) =

{

x ∈ R
P / Φx = 0

}

, the ((P −M)× 1) vector

µ is the vector of the degrees of freedom. On the contrary, the

(M×1) vector β is constrained by:

ΦC = RT
1 Q

T
1 (Q1β +Q2µ) = RT

1 β = A

⇒ β = (RT
1 )

−1A, (7)

withQT
1 Q1 = IM , identity matrix of sizeM , andQT

1 Q2 = 0

since Q is orthogonal. Now, with the change of variables of

(6), we express P = CT∆C with β and µ. The vector β is

fixed by (7) and the vector µ that minimizes P is given by

dP

dµ
= 0 ⇒ µ = −(QT

2 ∆Q2)
−1QT

2 ∆Q1β. (8)

Finally we get the optimal solution of (4) byC = Q1β+Q2µ.

3.3. Release of the constraint

In some cases, the exact fitting of the peaks is unnecessary,

and it is interesting to be able to release the equality con-

straint in order to improve the smoothness, reduction of P .

For example, we can control the maximal deviation between

the peaks and the estimated spectral envelope by solving the

following optimization problem

min
C∈RP

(

CT∆C
)

subject to ‖ΦC −A‖∞ ≤ ε (9)

with ‖v‖∞ = maxn{|vn|} the infinite norm, and ε such that

εdB = 20ε/ log(10) is the maximal deviation in [dB].

In this paper, we propose also another interesting idea for

the choice of the inequality constraint. It yields a significant

improvement of the smoothness without perceptible changes.

First we can note that the problems of the undesirable artifacts

generally come from some peaks which are lower than their

neighboring peaks. Nevertheless, considering the simultane-

ous auditory masking, cf. e.g. [12], we can expect that these

peaks are masked by their neighboring peaks. Then, from the

perceptual point of view, it is useless to fit these peaks be-

cause they are inaudible. The only important point is that the

value of the spectral envelope at these peak frequencies does

not exceed the masking threshold. To illustrate this principle,

we define the following inequality constraints:

Am − ǫ−m ≤ φmC ≤ Am + ǫ+m, ∀m ∈ [1,M ], (10)

where φm is them-th row of Φ. For the audible peaks, above
the masking threshold f(ω): ǫ−m = ǫ+m = ε, and for the

masked peaks: ǫ−m = ∞ and ǫ+m = f(ωm). Here we use

the simple model of [13] for the auditory masking threshold.

4. EXAMPLES AND EVALUATION

4.1. Examples

Figure 3 illustrates the True Discrete Cepstrum (TDC) and

compares it with the True Envelope of Fig. 1. The order of

the True Envelope is its optimal order which is P = 21 here,

cf. [14]. For the TDC, with M = 19 harmonics, we use

here the order P = 25 and k = 2, second derivative cf. (3).

We can see that the TDC provides a spectral envelope which

exactly fits the peaks and which is more regular than the True

Envelope, with an order slightly higher.

In Fig. 4, we illustrate the perceptual constraint release

which uses the auditory masking, cf. Sec. 3.3. From the har-

monics, the masking threshold is computed, and the values

of ǫ±m are set according to the “audibility” of the peaks. To

prevent some problems at the threshold, it is preferable to use

the computed masking threshold with a negative safety mar-

gin. First, we can see that the spectral envelope does not fit

the inaudible harmonics, but passes above them and below the

mask because of the safety margin. Second, as expected the

general form of the spectral envelope is slightly more regular.

4.2. Evaluation

To evaluate the performance of the True Discrete Cepstrum

with a comparison to the other methods (DAP, Discrete Cep-

strum and True Envelope), we realize the evaluation proce-

dure used in [14, 15]. In this section, we only summarize the

procedure, more details are given in [14].

The test signals are periodic and have a synthetic spec-

tral envelope computed by an ARMA(4,4) model. The angles

of the zeros and the poles in the complex Z-plane are fixed,

and the corresponding radii change to provide several differ-

ent spectral envelopes. The input peak values of the methods

DAP, Discrete Cepstrum and TDC are given by the sampling
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Fig. 3. Illustration of the True Discrete Cepstrum.
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Fig. 4. Illustration of the TDC with perceptual release.

of the synthetic spectral envelope: |H(ωm)|. For the True

Envelope, a sine synthesis gives the time signal and the Dis-

crete Fourier Transform provides the input spectrum of the

method, cf. see [16]. Note that the weighting window length

and the DFT size are specifically chosen in order to obtain

a good frequency resolution and a main lobe width equal to

ω0 = 2πF0/Fs, the fundamental frequency in [rad]. The

TDC uses the second derivative for P (k = 2, cf. (3)).
In Fig. 5, the root Mean Square Error (MSE) of the log-

arithmic amplitude, cf. [14], is presented as a function of the

normalized order α = P/M . Remind that P is the model

order and M the number of peaks. The DAP method and the

Discrete Cepstrum are given for P ≤ M , the TDC is naturally

given for P ≥ M and the True Envelope is given for all cases.

Note that in the case of periodic signals the optimal order of

the True Envelope is P = 0.5Fs/F0, which approximately

corresponds to α = 1. In Fig. 5a, the error is averaged over

the test signals with periods T0 ∈ [400, 500] in samples, low

frequencies. In Fig. 5b, the used periods are T0 ∈ [50, 150],
higher frequencies. Additionally, the evaluation of the stan-

dard spline interpolation is done, cf. e.g. [17]. Note that this

modeling is not suitable for the spectral envelope modeling.

As a general trend, we observe in Fig. 5 that the TDC out-

performs all methods when P > M , and it is equivalent to the

spline interpolation. Moreover we observe a stable behavior

with all orders P > M . Finally, we notice a great benefit of

the TDC for high frequencies, Fig. 5b.

5. CONCLUSION

In this paper we present a new and simple method for the

spectral envelope estimation using an accurate and smooth

spectral interpolation of the peaks. Contrarily to the regu-

larization of [7], this method has no sensitive parameters and

its results are stable for any order P > M . Not only the

True Discrete Cepstrum exactly fits the peaks, not only it out-
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Fig. 5. Results of the evaluation procedure.

performs the other methods, cf. Fig. 5, but also it is natu-

rally smoother without conditioning problems, cf. Figs. 1-3.

Moreover, when the exact fitting is not necessary, it is possible

to release the constraint in order to improve the smoothness,

by controlling with precision the maximal deviation. Addi-

tionally, we proposed an interesting idea to define an inequal-

ity constraint which respects the auditory masking. In this

case, the fitting error is not perceptible.

Remark that with the conditioning problem, a small

change of the original spectrum can involve a major change

in the estimated spectral envelope, then it can give some time

discontinuities in the case of a frame-by-frame analysis. Con-

sequently, the smoothness of the estimated spectral envelope

may improve the timbre stability for synthesis. Moreover, the

smoothness may also improve some sound modifications such

as pitch shifting and vibrato, and it may facilitate a low-order

ARMA approximation [18] for a low-cost synthesis.

Nevertheless, in the special case of real-time processing,

the True Envelope of [5] remains the most suitable method.

First, while the TDC needs the peak analysis, cf. e.g. [19],

the True Envelope only needs an FFT computation for the

input spectrum. Second, whereas the computation time of the

TDC depends on the matrix sizes, number of peaks M and

order P , the computation time of the True Envelope weakly

depends on the fundamental frequency.

As a consequence, the proposed TDC method provides

an interesting alternative method which has great benefits for

off-line analysis with a full control of the precision.
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