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ABSTRACT
This paper presents a novel feature representation called
sparse cepstral codes for instrument identification. We first
motivate the approach by discussing why cepstrum is suitable
for instrument identification. Then we propose the use of
sparse coding and power normalization to derive compact
codes that better represent the information of the cepstrum.
Our evaluation on both uni-source and multi-source instru-
ment identification tasks show that the proposed feature leads
to significantly better accuracy than existing methods. We
further show that cepstrum obtained from power-scaled spec-
trum can do better than typical cepstrum especially in multi-
source signal. The proposed system achieves 0.955 F-score in
uni-source dataset and 0.688 F-score in multi-source dataset.

Index Terms— cepstrum, power scale, sparse coding,
dictionary learning, instrument identification

1. INTRODUCTION

The real cepstrum of a time-domain, finite-length signal x
is obtained by taking the logarithm of the magnitude of the
Fourier transform of the signal and then computing the in-
verse Fourier transform [1],

Clog(x) = F−1(log |F(x)|) , (1)

where F(·) denotes the Fourier transform. Features derived
from the cepstrum, such as Mel-frequency cepstral coeffi-
cients (MFCCs), are often employed in contemporary audio
signal processing systems [2–4]. Due to the log function in
Eq. 1, the cepstrum converts signals combined by convolu-
tion (such as excitation and transfer functions in a source-filter
model) into additive terms for linear separation. For example,
for human voices, the low-frequency periodic excitation from
the vocal cords and the formant filtering of the vocal tract
would be in different regions in the cepstrum [5, 6].

To extract patterns from the cepstrum, a number of cep-
stral features have been proposed in the literature, with MFCC
being possibly the most famous one [7]. MFCC is a computa-
tionally light representation because its dimension is usually
low. However, such cepstral features might not capture every
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details of the cepstrum [8] because of the series of abstrac-
tion and transformation operations that convert raw cepstrum
into meaningful statistics. For example, it is well-known that
MFCC ignores much high-frequency information because of
the logarithmic filter spacing above 1 kHz [2]. Although high-
frequency information is less important for speech, this is not
the case for music.

To come up with a feature representation that preserves
the important information of the cepstrum, the sparse cod-
ing (SC) technique [9, 10] is investigated in this paper. SC
seeks a succinct representation of raw features as a combina-
tion of only a few atoms (codewords) of a dictionary, which
is assumed to be representative of the music universe [11].
Comparing to conventional audio features, SC offers greater
flexibility in capturing the nuance of music signals, in that
each dictionary atom can be considered as a quantization of
the music universe, and that the quantization goes finer as the
size of the dictionary increases. Because the sparse repre-
sentation is high-dimensional but sparse, using linear support
vector machine (SVM) [12] for training audio classifiers has
been found effective. For instance, applying SC to the raw
spectrumF(x) has led to state-of-the-art performance on mu-
sic genre classification and music auto-tagging [13–15]. Also,
there has been work using SC to perform instrument recogni-
tion [16]. To our best knowledge, however, SC has rarely
been applied to the cepstrum. We refer to the SC result of
the cepstrum as “sparse cepstral codes” and evaluate its effec-
tiveness as a feature representation for automatic instrument
identification (i.e., asking a machine to reproduce the human
labels of instrument in a music signal) [17–20].

The second contribution of the paper lies in the appli-
cation of power normalization [21] to the cepstrum. It has
been recently found that modifying the scale from conven-
tional log scale to power scale enhances the noise robustness
of a cepstrum-based speaker identification system [22–24].
Therefore, whether power normalization is beneficial for mu-
sic signal processing is worth a study. In particular, we are
interested in the case of predominant instrument identifica-
tion from multi-source music signals [18], as the interference
from subordinate instruments also challenges the robustness
of the identification system.

Our performance study includes instrument identifica-
tion from both uni-source (monophony) and multi-source
(polyphony) music signals. We report an empirical compari-
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son among spectrum and cepstrum features, with or without
sparse coding. The evaluation result confirms the effective-
ness of the proposed sparse cepstral codes from power-scaled
spectrum. We are able to improve the accuracy (measured in
F-score) from 0.820 to 0.955 for a uni-source dataset [17],
and from 0.630 to 0.661 for a multi-source dataset [18].

Section 2 describes the cepstrum and the techniques we
proposed to compute the sparse cepstral codes. After present-
ing a system overview in Section 3, we report the experiments
in Section 4. Finally, Section 5 concludes the paper.

2. CEPSTRAL FEATURE

2.1. Sparse cepstral codes

The computation of sparse cepstral codes involves three tech-
nical components: the computation of the cepstrum, SC, and
dictionary learning. SC employs an l1-regularizer in finding a
sparse representation α ∈ Rk of the input y ∈ Rm over a dic-
tionary D ∈ Rm×k. This is often referred to as the LASSO
problem [10],

α̂ = fSC(D,y) = argmin
α

‖y −Dα‖22 + λ‖α‖1 . (2)

Being a generic algorithm, SC can take any feature represen-
tation as the input y. We refer to the SC result of the cepstrum
y = Clog(x) as the sparse cepstral codes. While a straightfor-
ward linear-programming solver is computationally intensive,
efficient algorithms that better exploit the properties of Eq. 2
have been proposed [25]. We adopted the least angle regres-
sion (LARS)-lasso algorithm [9] in this work.

The dictionary D is learned offline from an external, pos-
sibly unlabeled, dataset referred to as the training corpus Y =
{y1, . . . ,yN}, in off-line. It involves the following joint op-
timization problem,

D̂ = argmin
D

1

N

N∑
i=1

(
1

2
‖yi −Dαi‖22 + λ‖αi‖1

)
, (3)

where the energy of any dictionary atom dj ∈ Rm, j ∈ {1, k}
is constrained to dTj dj ≤ 1. One can solve for Eq. 3 by iter-
atively updating D and αi, holding one fixed while updating
the other variable [11]. In this work, we employed the on-
line dictionary learning (ODL) solver [11] because of its time-
efficient and memory-friendly mini-batch mechanism, which
learns the dictionary incrementally by using a part of the train-
ing corpus in each update. The open-source package SPAMS
(http://spams-devel.gforge.inria.fr/) is em-
ployed for its ODL implementation.

2.2. Source-filter modeling perspective

When log scale is applied to the spectral representation as in
Eq. 1, the transformation is a homomorphic one that maps
convolution to addition [1], which facilitates the separation

(a)

(b)

Fig. 1. The (a) first and (b) second type of most frequently
used codewords (i.e., dictionary atoms) in the sparse repre-
sentation of the cepstra of violin signals.

of the source and filter components. A number of cepstrum-
based source-filter separation techniques has been proposed
in the literature [5, 6]. Such technique usually estimates the
transfer function of the filter as a white excitation source pass
through a filter. Consequently, the spectral envelope is almost
independent of pitch.

We found that sparse cepstral codes inherit the strength
of the cepstrum in separating pitch and timbre. Fig. 1 shows
the atoms dj that are most frequently used for encoding vio-
lin signals, whose spectrum is known to be well modeled by
the multiplication of harmonic series (the excitation source)
and the overall frequency response contributed by the vio-
lin resonator and string. We found that the atoms can be
distinctively divided into two types: the first type features
an apparent harmony structure and, whereas the second type
has no harmony component. The first type appears to be
strongly related to the pitch component contributed by the
excitation source, whereas the second type characterizes the
timbre component contributed by the resonator and string.

Nevertheless, the source and filter components might still
overlap in the cepstrum. Learning a dictionary of cepstrum
codewords helps resolve this issue by using different atoms
to represent the two components. Since the filter component
is more related to the discrimination of different instrument
timbres, using sparse cepstral codes as input to SVM might
lead to better accuracy in instrument identification, comparing
to the raw cepstrum or spectrum. This is supported by our
empirical study reported in Section 4.
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2.3. Power normalization

In addition to using the log function, we can also apply power
scales g(·) in computing the cepstrum. That is, Eq. 1 can be
expressed in the following more general form,

C(x) = F−1(g(F(x))) . (4)

We experimented with g(x) = |x|1/2, |x|1/3, |x|1/4, and |x|1/5
in this study, which are referred to as C2 (square root), C3 (cu-
bic root), C4, and C5, respectively.

The aforementioned scales change the function of the cep-
strum. On the one hand, these power scales no longer map
multiplication to addition. Instead, the power scales retain the
multiplication factor and are therefore scale-variant, a prop-
erty which may be useful when the energy level of the signal
carries relevant information. For example, as the predominant
instrument in a multi-source signal usually has higher energy
level [18], replacing the log function by a power scale in com-
puting the cepstrum might be helpful.

On the other hand, according to the Stevens’ power law
[26], the magnitude of a subjective sensation (e.g., the per-
ception of instrument timbre) increases proportionally to the
power of the magnitude of physical stimulus (e.g., a music
signal). Therefore, it is possible that the power-scaled variant
Eq. 4 better fits human perception of instrument.

In what follows, we denote the SC of spectrum as f(F)
and that of cepstrum, including both the log-scaled and
power-scaled ones, as f(C).

3. SYSTEM OVERVIEW

Fig. 3 shows the diagram of the proposed classification sys-
tem based on sparse cepstral codes. It begins with extract-
ing frame-level features (e.g., the cepstrum) from each song.
Then, it applies SC to compute the sparse representation for
each frame using a dictionary, which is trained from the train-
ing corpus. The frame-level codes are pooled along the tem-
poral dimension by sum pooling [14], leading to the song-
level feature representation for the song, which is used as in-
put for classification. The song-level feature is further nor-
malized by Manhattan normalization (i.e., sum-to-one nor-
malization) to account for the length of the different songs
[15]. Finally, the LIBLINEAR library [12] is employed for
training a linear SVM model for classification.

4. EXPERIMENT

4.1. Datasets & experimental setup

Two datasets were employed to evaluate the accuracy of iden-
tifying instrument: the ParisTech dataset [17] for uni-source
signal and the Music Technology Group (MTG) dataset [18]
for the multi-source case. The ParisTech dataset contains 273
solo pieces with different genres; each piece is played with

Fig. 2. Diagram of a classification system based on the pro-
posed sparse cepstral codes.

one of the following 10 possible instruments — bassoon, dou-
ble bass, clarinet, cello, flute, guitar, oboe, piano, violin, and
trumpet. Each piece is 111 seconds in length on average,
totaling 30,350 seconds [17]. The MTG dataset consists of
about 2,500 music pieces with multiple instruments sounded
at the same time. Each piece comes with a label of the pre-
dominant pitched instrument played in the piece, selecting
from one of the following 11 possible instruments — cello,
clarinet, flute, acoustic guitar, electric guitar, Hammond or-
gan, piano, saxophone, trumpet, violin and singing voice. The
songs are of various genres and are mostly shorter than 10
seconds, totaling 13,400 seconds [18]. For the MTG dataset
we found it a non-trivial task to determine the predominant
instrument even for human listeners.

As for the training corpora for dictionary learning, we
used the musical instrument sound subset of the RWC dataset
[27] for uni-source and the USPOP2002 dataset [28] for
multi-source. The former contains complete pitch ranges of
50 instruments with different instrument manufactures, mu-
sicians, playing styles, and dynamic levels, lasting 330,000
seconds in total. The latter is a collection of nearly 8,000
contemporary pop songs from approximately 400 artists.

The low-level feature representation y includes the raw
spectrum, the raw cepstrum, and 30-band MFCC [4], all of
which are based on a Fourier transform using Hanning win-
dow with 1,025 samples and 50% overlaps. We experimented
with different scaling functions for the cepstrum and tried SC
on the spectrum and cepstrum but not on MFCC because it
has been shown suboptimal in [13].

To avoid overfitting, a six-fold jack-knife cross-validation
scheme was adopted. Each fold contains at least one file per
instrument, where each file is exclusively used in training or
testing. Ten runs of cross-validation evaluation with random
partitions were performed to get the average result. The accu-
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Table 1. Results of different feature representations, where the first row shows accuracies and the second row shows F-scores

Task existing work low-level feature SC feature
[17] [18] MFCC F Clog f(F) f(Clog) f(C2) f(C3) f(C4) f(C5)

Uni-source (ParisTech) 0.820 – 0.541 0.684 0.705 0.934 0.945 0.941 0.939 0.948 0.957
Multi-source (MTG) – 0.630 0.229 0.256 0.276 0.611 0.610 0.603 0.637 0.649 0.661

Table 2. Classification accuracies of different SC features
with varying codebook size k for the uni-source dataset [17].
The last row shows the differences between k = 1024 and 64
k f(F) f(Clog) f(C2) f(C3) f(C4) f(C5)

64 0.818 0.833 0.910 0.892 0.919 0.916
128 0.873 0.875 0.926 0.924 0.918 0.921
256 0.902 0.920 0.936 0.935 0.936 0.938
512 0.907 0.926 0.947 0.942 0.944 0.947
1024 0.928 0.944 0.939 0.939 0.946 0.955
4 0.110 0.111 0.029 0.047 0.027 0.039

racy was evaluated in terms of the classification accuracy for
the uni-source dataset according to [17] and in terms of the
F-score, the harmonic mean of precision and recall, for the
multi-source dataset according, following [18].

4.2. Result

We first evaluated the accuracy of instrument identification
with different feature representations, with the dictionary size
k used in SC fixed to 1,024, a commonly adopted size [14].

The first row of Table 1 shows the accuracies for the
uni-source case. The following observations can be made.
First, a comparison between low-level features and SC fea-
tures clearly illustrates the effectiveness of SC in representing
audio information. Second, SC on cepstrum with log scale
(f(Clog)) performs better than SC on spectrum (f(F)), show-
ing that cepstrum contains relevant information of instrument
timbre. Third, higher accuracy can be obtained by using
higher-order power normalization (e.g., f(C5)), suggesting
replacing the log function by power scales might be advis-
able. Through a two-tailed t-test we validated that the perfor-
mance of f(C5) (0.957) is significantly better than that of the
state-of-the-art result (0.820) reported for this dataset [17].
Moreover, the performance difference between either f(C5)
and f(F) or f(C5) and f(C3) is also significant.

The second row of Table 1 shows the F-scores for the
multi-source case. We see that either f(Clog) or f(C2) ex-
hibits no advantage over f(F). However, better result was
obtained again by using higher-order power normalization.
When f(C5) was used, significantly better accuracy (0.661)
was obtained, comparing to either the use of f(F) or the
state-of-the-art result (0.630) [18]. The improvement of us-
ing higher-order power scales appears to be more pronounced
for the multi-source case, comparing to the uni-source case.

Next, we evaluate the performance of different SC fea-
tures as dictionary size k varies. As mentioned in Section 1,
we expected better performance can be obtained by increas-
ing k, which in effect increases the granularity of the sparse
representation [11]. From Table 2, we indeed see a posi-
tive correlation between k and the classification accuracy that
was obtained. Comparing to the spectrum, the performance
of the proposed cepstral codes appears to be relatively less
sensitive to the dictionary size k, except for f(Clog). This re-
sult indicates that SC on power-scaled cepstrum is a compet-
itive feature representation for instrument identification, even
with low-dimensional codes (which is more efficient to com-
pute [14]). Although we are not able to provide direct proofs
in this work, it seems that power normalization enhances the
robustness of instrument identification as it does for speaker
identification [22, 23].

5. CONCLUSION

In this paper, we have presented a novel system that incor-
porates cepstral feature and sparse coding for instrument
identification. The resulting feature representation, coined
as the sparse cepstral codes, exhibits promising performance
for two different instrument identification datasets. When
high-order power normalization is applied, significant better
performance in comparison to the state-of-the-art is obtained.
It appears that the use of power scales enhances the robust-
ness of an instrument identification system, an observation
that has been made in speaker identification problems. Al-
though the performance study presented here might be at best
preliminary, it provides empirical evidences that the proposed
sparse cepstral codes feature is a competitive representation
for automatic instrument identification.
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