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ABSTRACT
We introduce a novel approach for source number estima-
tion through an adaptive fuzzy c-means clustering. Spatial
feature vectors are extracted from microphone observations,
weighted for reliability and then clustered in a full-band man-
ner using an adaptive variation on the fuzzy c-means. A num-
ber of quality measures are combined to produce a weighted
sum which is used to find the optimal number of clusters at
each iteration of the clustering algorithm. Experimental eval-
uations using real-world recordings from a reverberant room
(RT60 = 390 ms) demonstrated encouraging performance in
both even- and under-determined conditions.

Index Terms— source number estimation, fuzzy c-means
clustering, adaptive, weights, quality measure.

1. INTRODUCTION

Blind source separation (BSS) is the recovery of source sig-
nals from the mixtures where minimal a priori information
is available. Many BSS techniques currently in use such
as [1–3] require a priori information about the number of
source signals, however in real-world scenarios this informa-
tion is often unavailable. Prior knowledge on the number of
sources has many benefits in areas such as automatic speech
recognition, teleconferencing and other hands-free systems.

To this end there have been a handful of algorithms de-
vised for the purpose of source number estimation for audio
applications [4–7]. The authors of [4] and [5] presented suc-
cessful source number estimation techniques, although their
approaches required as many as five and sixteen microphones
respectively. There has been other work for fewer micro-
phones; for example, Araki et al. [6] presented a method for
simultaneous source number estimation and blind source sep-
aration with just three microphones. This was done via full-
band clustering of the direction-of-arrival with a sparse prior,
however, this method was only suited to conditions with little
reverberation due to its assumption of anechoic propagation.

Other clustering-based approaches to BSS demonstrate
the potential extensibility to the source number estimation
problem. The BSS scheme in [1] and its modification in [3]
utilize the hard k-means and fuzzy c-means (FCM) clustering
algorithms for the estimation of separation masks. In these

BSS schemes, the final cluster estimates were representative
of the source signals, and the true number of sources was
therefore required to be known. Beringer et al. [8] explored
a local adaptive optimization scheme for the autonomous de-
termination of the optimal number of clusters for the FCM al-
gorithm. This algorithm, termed the adaptive FCM (aFCM),
required only an initial estimate of the number of clusters,
and employed a quality measure within a hill-climbing style
procedure to determine the optimal number of clusters.

However, the work in [8] was designed for the clustering
of synthetic data streams, rather than real-world multispeaker
speech data as in our study. As such, the quality measure used
to evaluate the validity of the clusters did not provide the cor-
rect source count for real audio data. Therefore, the aFCM
needed to be extended. We investigated a number of alterna-
tive quality measures, and composed a unique weighted sum
in place of that used in the original aFCM.

Furthermore, real-world recordings of speech signals are
often susceptible to outliers due to external sources of noise,
reverberation or nonideal recording equipment, and this pres-
ence of outliers may compromise the clustering. Previous
studies have proposed data weighting in favor of reliable
points in cluster centroid computation [9, 10]. In line with
this notion, we introduce and customize a novel weighting of
the feature data for the source number estimation task at hand.

Inspired by the promising work in [8–10], we present an
adaptive, hill-climbing premise to the source number estima-
tion problem for audio sources with feature weighting. We
modify the aFCM algorithm to incorporate a weighted sum of
quality measures, and we also weight the feature data in favor
of the reliable data points. Experiments in real-world condi-
tions demonstrate that our proposed method is capable of esti-
mating the number of sources in even- and under-determined
conditions without any a priori knowledge.

2. CLUSTERING-BASED BSS

2.1. Problem statement

We describe the general flow of the clustering-based BSS
schemes as described by [1,3]. In the short-time Fourier trans-
form (STFT) domain we can describe each of the M observa-

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 7500



tion mixtures by the convolutive mixture model:

xm(τ, f) =

N∑
n=1

hmn(f)sn(τ, f), (1)

where τ and f represent the time frame and frequency bin
indices and hmn(f) represents the impulse response from
source n to microphone m. xm(τ, f) and sn(τ, f) denote
the STFT of the mth observation and nth source respec-
tively. The sparseness of the speech signals is assumed as
in [11, 12] such that at most one source is active for each
time-frequency slot. For the dominant source n at time-
frequency slot (τ, f), the model in (1) is therefore reduced to
xm(τ, f) ≈ hmn(f)sn(τ, f). Using this assumption, we cal-
culate features to facilitate mask estimation for the individual
sources from the observed mixtures.

2.2. Feature extraction

We follow [3] and generate complex-valued features at each
time-frequency slot, θ(τ, f) = [θ1(τ, f), ..., θM (τ, f)], with
each component of the vector as

θm(τ, f) = θLm(τ, f) exp(jθPm(τ, f)), (2)

where θLm(τ, f) encodes the normalized level ratios as

θLm(τ, f) =
|xm(τ, f)|
A(τ, f)

, (3)

and θPm(τ, f) encodes the phase ratios to a common reference
microphone of index J as

θPm(τ, f) =
1

α
arg

[
xm(τ, f)

xJ(τ, f)

]
, (4)

where A(τ, f) =
√∑M

m=1 |xm(τ, f)|2 and α = 4πc−1dmax
are normalization constants, c denotes the speed of sound and
dmax the maximum distance between any two microphones.

2.3. Source recovery

According to the sparseness assumption [12] each feature rep-
resents a single source. Under this assumption, and assuming
we know the number of sources a priori, we can then proceed
to cluster the features into N clusters using methods such as
the hard k-means clustering [1] or FCM clustering [3, 9].

These algorithms generate a membership partition U,
which can then be interpreted as a separation mask. In the
case of the FCM algorithm, each element of U is denoted by
un(τ, f), where un(τ, f) ∈ [0, 1]. The values in un(τ, f) in-
dicate the likelihood that the feature at (τ, f) belongs to the
nth cluster.

The spatial image of source n at microphone m is then
calculated as [9]

ŝmn(τ, f) = un(τ, f)xm(τ, f). (5)

The sources can be reconstructed in the time domain using
the inverse STFT.

3. PROPOSED SOURCE NUMBER ESTIMATION
ALGORITHM

The previous section described the general scheme for a
clustering-based BSS system based on the MENUET algo-
rithm. We propose to modify this to enable blind source num-
ber estimation. First we generate features from the observed
mixtures as in Section 2.2. We then weight these features for
robustness and use a modified version of the adaptive fuzzy c-
means clustering from [8] to determine the number of sources.

3.1. Calculation of weights

Given the assumption of sparseness between the signals, it is
reasonable to assume that not all of the time-frequency slots
will contribute equally to the final source reconstructions. In
the presence of reverberation the direct path will provide a
higher initial response before the multipath reverberation ef-
fects become apparent. By favoring the time-frequency slots
with higher amplitudes, we simultaneously preference this di-
rect path and reduce the effect of random noise from the un-
used time-frequency slots. To this end, we calculate a set of
weights {w(τ, f)}∀(τ,f) using the relative amplitude of the
microphone observations in each time-frequency slot. The
weights were designed such that the reliable features were
given a higher weight without under-weighting the less reli-
able ones.

The weights are calculated as follows:

w(τ, f) = γ(τ, f)logmax(γ)(ρ), (6)

where

γ(τ, f) =
T‖θ(τ, f)‖∑

∀(τ,f)
‖θ(τ, f)‖

. (7)

T denotes the total number of feature vectors and ‖·‖ denotes
the complex vector norm. The weights are set to lie within the
range (0, ρ], where ρ denotes the maximum amount that any
time-frequency slot should be weighted above average. We do
this by considering the upper bound on γ(τ, f), i.e. max(γ),
and we calculate the weight by

w(τ, f) = γ(τ, f)y, (8)

such that max(γ)y = ρ to ensure max(w(τ, f)) = ρ. This
yields y = logmax(γ)(ρ), and hence (6). For the application of
this algorithm to source number estimation, the optimal value
of ρ was empirically determined as ρ = 10.

3.2. Adaptive fuzzy clustering

We then cluster the features using the aFCM as proposed by
Beringer et al. [8]. The aFCM clustering has been modified
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from its original in [8] to accommodate the weights in (6).
In our weighted aFCM (waFCM) we iteratively minimize the
cost function:

JwaFCM =
∑
∀(τ,f)

K∑
k=1

w(τ, f)un(τ, f)
q‖θ(τ, f)−vk‖2, (9)

where q defines the fuzziness of the membership, K is the
number of clusters and vk is the centroid of cluster k. The
minimization can be solved using Lagrange multipliers, and
is usually implemented as an alternating optimization scheme
due to the open nature of its solution [13,14]. Beginning with
a random partitioning in U, we alternate the following up-
dates for the centroids and memberships

vk =

∑
∀(τ,f)

un(τ, f)
qw(τ, f)θ(τ, f)∑

∀(τ,f)
un(τ, f)qw(τ, f)

, (10)

uk(τ, f) =

[
K∑
i=1

(
‖θ(τ, f)− vk‖2

‖θ(τ, f)− vi‖2

) 1
q−1

]−1
. (11)

At each iteration, we test the quality of the solutions for
[K − 1,K,K + 1]. The value of K is then updated to that of
[K − 1,K,K +1] with the highest quality, and the clustering
continues until convergence is reached. Convergence is typ-
ically considered to be reached when the difference between
successive partitions is sufficiently small [13].

3.3. Cluster quality measurement

The quality measurement used in [8] was applied to syn-
thetic data streams, and was not suited to the source num-
ber estimation application in this study. As such, we eval-
uated a range of quality measures, detailed in Table 1. The
subscripts BH,PE,FS,XB refer to the authors or algorithm
name: Beringer&Hüllermeier [8], Partition Entropy [13],
Fukuyama&Sugeno [15], Xie&Beni [16] respectively. We
deduced that a combination of the measures was the best. All
the measures were designed for use in clustering algorithms
such as to estimate the quality based on a balance between the
intra-cluster spread and the inter-cluster distance. We mod-
ifed the measures to include the weights as in (6), and a sum-
mary of these can be found in Table 1.

We combine the different quality measures to utilize the
advantages of each while minimizing the disadvantages. We
normalize and combine the quality measures in a voting sys-
tem; in this way, each of the quality measures gives a best
estimate for each of the cluster numbers. These values for
[K − 1,K,K +1] are normalized to the unit interval [0, 1] as

Q∗ =
Q∗ −Q∗,worst

Q∗,best −Q∗,worst
, (12)

where ∗ ∈ {BH,PE,FS,XB} denotes the algorithm used to
generate the quality measure. We follow the statistics notion
of a weighted sum and combine the four quality measures
with appropriately selected weights as

Q = wBHQBH + wPEQPE + wFSQFS + wXBQXB, (13)

where wBH, wPE, wFS, wXB denote the weights. The opti-
mal values for the weights were empirically determined as
[wBH, wPE, wFS, wXB] = [0.9, 0.9, 1, 1].

The algorithm for source number estimation is summa-
rized in the table below.

Table 2. Summary of proposed weighted adaptive clustering algo-
rithm for source number estimation.

Weighted adaptive clustering algorithm

Input: θ(τ, f), {w(τ, f)}∀(τ,f), Kinit, q
Output: K
Initialize partition matrix U(0) randomly;
Initialize iteration number i = 1;
Update centroids {vk}i∀k with U(i−1) using (10);
Update partition matrix Ui with {vk}i∀k using (11);
Compute partition matrix for K − 1, Ui

−1;
Compute partition matrix for K + 1, Ui

+1;
Find best partition among Ui

−1,U
(i),Ui

+1 using Q in (13);
Update K ← argmax

K−1,K,K+1
{QK−1, QK , QK+1};

Update iteration number i = i+ 1;
Repeat until convergence;
Return optimal number of clusters K (source number estimate).

4. EXPERIMENTAL EVALUATIONS

4.1. Experimental setup

To verify the performance of our proposed algorithm we ran
several tests on real-world recordings. These recordings were
made in an office room of dimensions 5.97× 5.23× 2.65 m
with an array of three omnidirectional microphones centered
at 2.02× 1.75 × 0.97 m. This setup is shown in Fig. 1, where
the microphones are placed at the corners of a 4 cm triangle
and the speech sources are placed at various angles at a dis-
tance R of 120 cm from the array center. The setup is similar
to that of the source number estimation scheme in [6], to allow
easy comparison. The source signals were obtained from the
TIMIT database [17], and were looped to a common length of
10 s. For the initialization of the clustering, the membership
matrix was randomly initialized with values in the interval [0,
1], and the fuzzification parameter was set to q = 2. For all
evaluations, the initial estimate of the number of clusters was
set as Kinit = 3. Full details of the experimental conditions
are in Table 3.

We tested 20 trials per experimental setup, and presented
the results with respect to the source number estimation ac-
curacy, in accordance with results in [6]. This is computed
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Table 1. Table of the four different quality measures included in this study (cf. Section 3.3). θ̄(τ, f) denotes the mean of the feature data
set.

Quality Measure Function

QBH [8] 1
T

∑
∀(τ,f)

K∑
k=1

w(τ, f)uk(τ, f)q‖θ(τ, f)− vk‖2
∑

1≤k≤l≤K

VkVl
‖vk−vl‖2

where Vk =
∑
∀(τ,f)

w(τ, f)U‖θ(τ, f)− vk‖2 /
∑
∀(τ,f)

U

QPE [13] − 1
T

K∑
k=1

∑
∀(τ,f)

w(τ, f)un(τ, f)ln(un(τ, f))

QFS [15]
K∑
k=1

∑
∀(τ,f)

w(τ, f)un(τ, f)q
(
‖θ(τ, f)− vk‖2 − ‖θ̄(τ, f)− vk‖2

)
QXB [16] 1

K

K∑
k=1

∑
∀(τ,f)

w(τ, f)un(τ, f)q‖θ(τ, f)− vk‖2 /mini,j(vi − vj)

as
%ACC =

C

T
× 100, (14)

where C denotes the number of correct trials and T denotes
the total number of trials.

Fig. 1. Experimental setup of microphones and speech sources.

Table 3. Experimental conditions.

Parameter Value

Number of microphones 2, 3
Number of sources 2, 3, 4
Source-microphone distance 120 cm
Source signal duration 10 s
Sampling rate 8 kHz
STFT window Hann
STFT frame size 128 ms
STFT frame shift 32 ms
Reverberation time (RT60) 390 ms

4.2. Source number estimation results

Fig. 2 summarizes the accuracy of our proposed method. We
present only the results of the proposed waFCM, as the orig-
inal aFCM failed to count sources as mentioned in the Intro-
duction. In the even- and under-determined cases of two or
three sources we consistently achieve 90 % accuracy. How-
ever once the numbers of sources exceeds the number of mi-
crophones the accuracy drops. This compares well with Araki

et. al. [6] whose experiments were performed in an environ-
ment with RT60 = 130 ms compared with our 390 ms. Also
worth noting is the use of fewer microphones than [4,5] while
still obtaining good accuracy.

Fig. 2. Source number estimation accuracy for different micro-
phone and source number configurations, as depicted in Fig. 1.

5. CONCLUSIONS

This paper proposes an algorithm for source number estima-
tion using time-frequency feature clustering. The results ob-
tained compare favorably to other source number estimation
methods such as [6]. Given the promising results with the
weights, the inclusion of contextual information as in [9] may
improve the accuracy. Future work should also consider a
mathematically-motivated derivation of the quality measure
weights, as well as evaluations on public benchmark data. We
can also consider the combination of weighted adaptive FCM
for both source number estimation and mask estimation for a
truly autonomous source separation scheme.
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