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ABSTRACT

This paper considers the problem of performance analysis of data fu-

sion schemes in the presence of Byzantine attacks. First, we analyze

the security performance of data fusion schemes with Byzantines.

We show that when more than a certain fraction of Byzantines are

present in the network, the raw data fusion schemes become com-

pletely incapable (blind). More specifically, we obtain a closed form

expression for the lower bound on the fraction of Byzantines needed

to blind the fusion center as a function of attacker’s strength. Next,

we investigate the global detection performance in the presence of

Byzantine attacks, and analytically characterize the effect of Byzan-

tines on detection performance. Numerical results provide insights

into our analysis.

Index Terms— Distributed Detection, Data Fusion, Byzantine

Attacks, Deflection Coefficient, Probability of Error

1. INTRODUCTION

Distributed detection is a well studied topic in detection theory lit-

erature [1–3]. The distributed detection framework comprises of

a group of spatially distributed nodes which acquire the observa-

tions regarding the phenomenon of interest and send them to the

fusion center (FC) where a global decision is made. Different fu-

sion schemes can be employed depending on what is transmitted

to the FC. For example, in data fusion based schemes, nodes send

their raw energy measurements, however, in decision fusion based

schemes nodes send their local detection decisions based on their

energy measurements. In this paper, our focus is on the data fusion

based detection schemes where raw measurements are sent to the

FC.

In recent years, such distributed networks have become increas-

ingly vulnerable to security threats. One typical attack is a Byzantine

attack or a data falsification attack. Byzantines try to degrade the de-

tection performance of the fusion center by sending falsified infor-

mation. Recently, the problem of detection in the presence of Byzan-

tine attacks has attracted attention. In [4–16], the authors consid-

ered the problem of Byzantine attacks on decision fusion schemes.

Byzantines, in order to undermine network performance, may alter

their one bit local decisions prior to transmission. In addition to

the aforementioned contributions that consider Byzantine attacks on

decision fusion schemes, a few other papers have considered Byzan-

tine attack on data fusion schemes. Byzantine attacks on data fusion

schemes in [17–20] aim to degrade the detection performance by

manipulating their observed data (e.g., raw energy values) either by

increasing or decreasing the signal strength. In such scenarios, it is

important to characterize and study system degradation caused by

the Byzantines.

The impact of Byzantine attacks on data fusion schemes has

been briefly mentioned in [19–21], and some schemes to counter

them have been proposed in [17–21]. However, no analytical study

has been carried out to investigate the performance of the system.

We aim to fill this gap by analyzing the security and detection per-

formance degradation of data fusion based methods under Byzantine

attacks. We are interested in an analytical characterization of the

ability of Byzantines to affect the decision at the fusion center. The

analysis and the discussion in the rest of the paper provide a deeper

understanding of the effectiveness of Byzantine attacks. The main

contributions of this paper are as follows.

1. We use deflection coefficient to characterize the security

performance of a detection system and analyze performance

degradation as a function of number of Byzantines.

2. We provide a lower bound on the fraction of Byzantines

needed to blind the FC as a function of attack strength.

3. Using probability of detection and probability of false alarm

as measures of detection performance, we investigate the de-

tection performance degradation with Byzantines.

2. SYSTEMMODEL

The problem of signal detection is formulated as a binary hypothesis

test where the hypothesis H1 indicates the presence of a signal,

while H0 indicates its absence. Nodes acquire observations that

are independent conditioned on the hypotheses. A parallel network

topology with N nodes using an energy detection scheme [22] is

considered. Nodes directly transmit their summary statistic based

on raw energy value to the FC through noise free reporting channels.

For the ith node, the received signal xi at time instant k can be

modeled as

xi(k) =

{

ni(k), if H0

hisi(k) + ni(k) if H1

where hi is the channel gain, si(k) is the signal at time instant
k, ni(k) is AWGN, i.e., ni(k) ∼ N(0, σ2

i ). si(k) and ni(k) are
assumed to be independent of each other. Each node i calculates a
summary statistic Yi based on M samples that are collected over a

detection interval of interest, i.e., Yi =
∑M

k=1(xi(k))
2, where M

is determined by the time-bandwidth product. Since Yi is the sum

of the square ofM Gaussian random variables,
Yi

σ2

i

follows a central

chi-square distribution withM degrees of freedom under H0; other-

wise, non-central chi-square distribution withM degrees of freedom

and parameter ηi.

Yi

σ2
i

∼

{

χ2
M , if H0

χ2
M (ηi) if H1

where ηi =
Es|hi|2

σ2

i

is the local SNR at the ith node and the quantity

Es =
∑M

K=1 |s(k)|
2 represents transmitted signal energy based on

M samples. Note that the local SNR isM times the average SNR at

the output of the energy detector, which is
Es|hi|2
Mσ2

i

.
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For data fusion schemes, energy values from different nodes are

employed to compute a weighted average with optimized weight co-

efficients and the decision is made based on the weighted sum:

f(Y1, Y2...YN ) =

{

H1 if
∑N

i=1 wiYi > λ
H0 otherwise

where λ is the global test statistic threshold. By defining diag(.) as
a square diagonal matrix with the elements of a given vector on the

diagonal, we define: ΣH0
= 2Mdiag2(σ),

ΣH1
= 2Mdiag

2(σ) + 4diag(η)diag2(σ), w = [w1, · · · , wN ]T

σ = [σ2
1 , · · · , σ

2
N ]T , h = [|h1|

2
, · · · , |hN |

2]T , η = [η1, · · · , ηN ]T .

Now, threshold λ with targeted false alarm constraint p is given by

λ = Nσ
T
w +Q

−1(p)
√

wTΣH0
w. (1)

The optimal weights are given by wi =
ηi/σ

2

i∑
N

i=1
ηi/σ

2

i

, where ηi is the

local SNR and σ2
i is the variance of the measurement noise [23,24].

According to the central limit theorem, if the number of samples M
is large enough (e.g., M ≥ 10 in practice), the global test statistic,
Λ =

∑N
i=1 wiYi, is normally distributed with mean

mean(Λ) =

{

MσTw if H0

(Mσ + Esh)
Tw if H1

and variance

V ar(Λ) =

{

wTΣH0
w if H0

wTΣH1
w if H1.

Next, a mathematical model for Byzantine attacks is presented.

3. THE BYZANTINE ATTACKMODEL

The objective of the Byzantines is to degrade the detection perfor-

mance of the network by falsifying their data. We assume that the

fusion center does not know which node is a Byzantine, but it knows

that there are α fraction of Byzantines in the network. By assum-

ing that the Byzantines are intelligent and know the true hypothesis,

we analyze the performance of the data fusion schemes. This anal-

ysis provides the most favorable case from the point of view of the

Byzantines and yields the maximum performance degradation that

Byzantines can cause. Byzantines tamper their raw data or sensed

energy value Y and send Ỹ such that the detection performance will

be degraded:

Ỹi =

{

Yi +Di if H0

Yi −Di if H1

where Di is a constant value which represents the attack strength.

As we show later, Byzantine nodes will use a large value of Di so

that the final statistics value is dominated by the Byzantine node’s

local statistic that will lead to a degraded detection performance.

Next, we analyze the security performance of raw data fu-

sion based detection schemes in the presence of Byzantine attacks.

We use the Deflection coefficient [25] to characterize the security

performance of the detection scheme due to its simplicity and its

strong relationship with the global detection performance. De-

flection coefficient of the global test statistic, Λ is defined as:

D(Λ) =
(µ1 − µ0)

2

σ2
0

, where µk = E[Λ|Hk] is the conditional

mean and σ2
k = E[(Λ − µk)

2|Hk] is the conditional variance. The
deflection coefficient is also closely related to other performance

measures, e.g., Receiver Operating Characteristics (ROC) curve. In

general, the detection performance monotonically increases with

increasing value of the deflection coefficient. We define the critical

point of the distributed detection network as the minimum fraction

of Byzantine nodes needed to make deflection coefficient at the

fusion center equal to zero (or blind the network) and denote it

by αblind. In Section 4, we use αblind to characterize the secu-

rity performance of the network. Then in Section 5, we analyze

the performance of raw data fusion based detection schemes in the

presence of Byzantine attacks. We consider type I and type II error

probabilities (equivalently Pf and Pd) as the network performance

metrics.

4. SECURITY PERFORMANCE ANALYSIS

In this section, we analyze the security performance of the data fu-

sion schemes in the presence of Byzantines. Next, we determine the

minimum fraction of Byzantines needed to make the network blind

(or αblind) in data fusion based schemes.

Lemma 1. For raw data fusion schemes, the minimum fraction of

Byzantine nodes needed to blind the network or to make the deflec-

tion coefficient zero is given by

αblind =
1

2

∑N
i=1(wiηiσ

2
i )

∑N
i=1(wiDi)

.

Proof. For large enough M , the local test statistic Yi is normally

distributed with mean

meani =

{

Mσ2
i ifH0

(M + ηi)σ
2
i ifH1

and variance V ari =

{

2Mσ4
i ifH0

2(M + ηi)σ
4
i ifH1

Conditional mean µk = E[Λ|Hk] and conditional variance

σ2
k = E[(Λ−µk)

2|Hk] of the global test statistic, Λ =
∑N

i=1 wiỸi,

are given by:

µ0 =
N
∑

i=1

[
αwi

∑N
i=1 wi

(Mσ
2
i +Di) +

(1− α)wi
∑N

i=1 wi

(Mσ
2
i )] (2)

µ1 =

N
∑

i=1

[α
wi

∑N
i=1 wi

((M + ηi)σ
2
i −Di)

+ (1− α)
wi

∑N
i=1 wi

((M + ηi)σ
2
i )] (3)

Byzantine nodes want to make the deflection coefficient as small

as possible. Deflection coefficient is always non-negative; so they

want to make D(Λ) =
(µ1 − µ0)

2

σ2
0

= 0. After substituting values

from (2) and (3), the condition to make D(Λ) = 0 becomes

N
∑

i=1

[αwi(ηiσ
2
i − 2Di) + (1 − α)wi(ηiσ

2
i )] = 0 (4)
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After simplifying the above equation the condition to blind the FC

becomes αblind =
1

2

∑N
i=1(wiηiσ

2
i )

∑N
i=1(wiDi)

.

Observe that, αblind is a monotonically decreasing function of

the attack strength Di. In practice, the optimal value of the parame-

terDi is dependent on the protection mechanism used by the FC.

5. DETECTION PERFORMANCE ANALYSIS

In this section, we analyze the detection performance of the data

fusion schemes with Byzantines. In the presence of α fraction of

Byzantines, the distribution of Ỹi given Hk can be approximated

as a Gaussian mixture which comes from N ((µ1k)i, (σ1k)
2
i ) with

probability (1−α) and fromN ((µ2k)i, (σ2k)
2
i ) with probability α,

whereN denotes the normal distribution and

(µ10)i = Mσ
2
i , (µ20)i = Mσ

2
i +Di

(µ11)i = (M + ηi)σ
2
i , (µ21)i = (M + ηi)σ

2
i −Di

(σ10)
2
i = (σ20)

2
i = 2Mσ

4
i , and (σ11)

2
i = (σ21)

2
i = 2(M + ηi)σ

4
i

Similarly, the PDF ofXi = wiỸi conditioned onHk can be derived

f(xi|Hk) = (1− α)φ(wi(µ1k)i, (wi(σ1k)i)
2)

+ αφ(wi(µ2k)i, (wi(σ2k)i)
2) (5)

where φ(x|µ, σ2) (for notational convenience denoted as φ(µ, σ2))

is the PDF ofX ∼ N (µ, σ2) and φ(x|µ, σ2) = 1

σ
√

2π
e−(x−µ)2/2σ2

.

Next, for clarity of exposition, we first derive our results for a two

node network. Later we generalize our results for an arbitrary

number of nodes, N .

Notice that, for the two node case, Λ̃ = w1Ỹ1 + w2Ỹ2, is a

summation of independent random variables, Xi = wiỸi, with con-

ditional PDF given in (5). Notice that, PDF of (Z = X1+X2) is the

convolution (∗) of fX1
(x1) = (1−α)φ(µ1

1, (σ
1
1)

2)+αφ(µ2
1, (σ

2
1)

2)
and fX2

(x2) = (1− α)φ(µ1
2, (σ

1
2)

2) + αφ(µ2
2, (σ

2
2)

2).

fZ(z) = fX1
(x1) ∗ fX2

(x2)

fZ(z) = [(1− α)φ(µ1
1, (σ

1
1)

2) + αφ(µ2
1, (σ

2
1)

2)] ∗

[(1− α)φ(µ1
2, (σ

1
2)

2) + αφ(µ2
2, (σ

2
2)

2)]

= (1− α)2[φ(µ1
1, (σ

1
1)

2) ∗ φ(µ1
2, (σ

1
2)

2)]

+(α)2[φ(µ2
1, (σ

2
1)

2)) ∗ φ(µ2
2, (σ

2
2)

2))]

+α(1− α)[φ(µ2
1, (σ

2
1)

2) ∗ φ(µ1
2, (σ

1
2)

2)]

+(1− α)α[φ(µ1
1, (σ

1
1)

2) ∗ φ(µ2
2, (σ

2
2)

2)].

Now, using the fact that convolution of two Gaussian PDFsφ(µ1, σ
2
1)

and φ(µ2, σ
2
2) is again normally distributed with mean (µ1 + µ2)

and variance (σ2
1 + σ2

2), we can derive the results below.

fZ(z) = (1− α)2[φ(µ1
1 + µ

1
2, (σ

1
1)

2 + (σ1
2)

2)]

+(α)2[φ(µ2
1 + µ

2
2, (σ

2
1)

2 + (σ2
2)

2)]

+α(1− α)[φ(µ2
1 + µ

1
2, (σ

2
1)

2 + (σ1
2)

2)]

+(1− α)α[φ(µ1
1 + µ

2
2, (σ

1
1)

2 + (σ2
2)

2)].

Let I denote the set of all combinations of node strategies:

I = {{B1, B2}, {H1, B2}, {B1,H2}, {H1,H2}}

where byBi we mean that node i is a Byzantine and byHi we mean

that node i is an honest node. Let At ∈ J denote the indices of

honest nodes in the strategy combination t.

J = {A1 = {φ}, A2 = {1}, A3 = {2}, A4 = {1, 2}}

J
c = {Ac

1 = {1, 2}, Ac
2 = {2}, Ac

3 = {1}, Ac
4 = {φ}}

We use {φ} to denote the null set andm to denote the cardinality of

subset At ∈ J . Using these notations, we generalize our results for
any arbitrary N .

Lemma 2. The global test statistic Λ̃ =
∑N

i=1 wiỸi is a Gaussian

mixture with PDF

f(Λ̃|Hk) =
∑

At∈J
(α)N−m(1−α)mφ(Λ̃|(µk)At

,

N
∑

i=1

(wi(σ1k)i)
2))

with (µk)At
=

∑

j∈At

wj(µ1k)j +
∑

j∈Ac
t

wj(µ2k)j .

The performance of the detection scheme in the presence of

Byzantines can be represented in terms of the probability of detec-

tion and the probability of false alarm of the network.

Proposition 1. The probability of detection and the probability of

false alarm of the network in the presence of Byzantines can be rep-

resented as

Pd =
∑

At∈J
(α)N−m(1− α)mQ





λ− (µ1)At
√

∑N
i=1(wi(σ11)i)2)



 ,

Pf =
∑

At∈J
(α)N−m(1− α)mQ





λ− (µ0)At
√

∑N
i=1(wi(σ10)i)2)



 .

Remark 1. Notice that, the expressions of probability of detection

Pd and probability of false alarm Pf for the N -node case involves
2N combinations (cardinality of J is 2N ). It, however, can be repre-
sented compactly by vectorizing the expressions,i.e.,

Pd = 1
T



b⊗Q





λ− µ1
√

∑N
i=1(wi(σ10)i)2)









with µ1 = Awµ11 + Acwµ21, B = (1 − α)A + αAc and

b = [B1 ⊗ · · · ⊗ B
N], where boldface letters represent vec-

tors, ⊗ symbol represents element-wise multiplication, Q(·) repre-
sents element wise Q function operation, i.e., Q(x1, · · · , xN) =
[Q(x1), · · · , Q(xN)]T , Bi is ith column of matrix B, wµj1 =
[w1µ

1
j1, · · · , wNµN

j1]
T , matrix A(2N∗N) is the binary representa-

tion of decimal numbers from 0 to N − 1 and Ac is the matrix after

interchanging 1 and 0 in matrix A.

6. NUMERICAL RESULTS

In this section, we numerically evaluate the security and detec-

tion performance of the system in the presence of Byzantines.

We consider a network of N = 8 nodes with channel gains

h = [0.8, 0.8, 0.7, 0.71, 0.72, 0.61, 0.69, 0.9]. For simplicity, we

assume that the nodes are detecting a known signal under AWGN

with s(k) = 1 and noise variance σi = 1, ∀i. Each node i calculates
a summary statistic Yi based onM = 12 samples.
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Fig. 1. Security performance analysis. (a) Effect of Byzantines on Deflection Coefficient. (b) Effect of Attack Strength on αblind .
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Fig. 2. Detection performance analysis. (a) Effect of Byzantines on Prob. of Detection. (b) Effect of Byzantines on Prob. of False Alarm.

6.1. Security Performance Evaluation

Figure 1(a) shows the effect of Byzantine attacks on the deflection

coefficient for the data fusion scheme. We plot the deflection coef-

ficient as a function of the fraction of Byzantines, α, and the attack
strength,Di, which is assumed to be the same for all the Byzantines,

i.e., Di = D, ∀i. We can see from the figure that only 40 percent
Byzantines attacking with the attack strength D = 8 can blind the
FC, which corroborates our theoretical result presented in Lemma 1.

Another observation to make is that the deflection coefficient D(Λ)
decreases asD increases. This implies that the minimum fraction of

Byzantines needed to make the deflection coefficient equal to zero is

dependent on the attack strength.

In Figure 1(b), we plot αblind as a function of the attack strength,

D. It can be seen that the minimum fraction of Byzantines needed
to make the deflection coefficient zero is a monotonically decreasing

function of D. In other words, Byzantines can minimize αblind to

an arbitrary value by increasing D. Observe that, when D < 3.5,
the Byzantines cannot make D(Λ) = 0. However, for D ≥ 3.5, the
value of αblind decreases asD increases and atD = 20.5, αblind is

less than 0.2.

6.2. Detection Performance Evaluation

In this subsection, we evaluate the detection performance of the data

fusion schemes in the presence of Byzantine attackers.

Figure 2(a) shows the effect of Byzantine attacks on the global

probability of detection Pd for Data Fusion schemes. We use the

threshold at the FC given in (1) such that p = 0.2 or constraining
the probability of false alarm below 0.2. We assume that the attack
strength, Di, is the same for all the Byzantines, i.e., Di = 8, ∀i.
Notice that, as the fraction of Byzantines in the network increases,

the global probability of detection Pd decreases.

In Figure 2(b), we plot the effect of Byzantine attacks on the

global probability of false alarm Pf in Data Fusion schemes. We use

the threshold at the FC given in (1) such that p = 0.2 or constraining
the probability of missed detection below 0.2. We assume that the
attack strength, Di, is the same for all attackers, i.e., Di = 8, ∀i.
Notice that, as the number of Byzantines in the network increases,

the global probability of false alarm Pf decreases.

As can be seen from both the figures (Figs. 1 and 2), as the num-

ber of Byzantines in the network increases, network wide detection

performance degrades significantly. In the future, we plan to extend

this work to the scenarios where both the FC and the Byzantine at-

tacker act in a strategic manner to optimize their own utilities.
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