
EFFICIENT MULTI-PARTY COMPUTATION WITH COLLUSION-DETERRED SECRET

SHARING

Zhaohong Wang, Ying Luo, and Sen-ching Cheung

Department of Electrical and Computer Engineering, University of Kentucky

ABSTRACT

Many secure multiparty computation (SMC) protocols use Shamir’s
Secret Sharing (SSS) scheme as a building block. Unlike other cryp-
tographic SMC techniques such as garbled circuits (GC), SSS re-
quires no data expansion and achieves information theoretic security.
A weakness of SSS is the possibility of collusion attacks from par-
ticipants. In this paper, we propose an evolutionary game-theoretic
(EGT) approach to deter collusion in SSS-based protocols. First, we
consider the possibility of detecting the leak of secret data caused by
collusion, devise an explicit retaliation mechanism, and show that
the evolutionary stable strategy of this game is not to collude if the
technology to detect the leakage of secret is readily available. Then,
we consider the situation in which data-owners are unaware of the
leakage and thereby unable to retaliate. Such behaviors are deterred
by injecting occasional fake collusion requests, and detected by a
censorship scheme that destroys subliminal communication. Com-
parison results show that our collusion-deterred SSS system signifi-
cantly outperforms GC, while game simulations confirm the validity
of our EGT framework on modeling collusion behaviors.

Index Terms— multi-party computation, collusion, efficiency

1. INTRODUCTION

Privacy protection in distributed computing enables distrusting par-
ties to participate in joint computation without revealing their secret
data. The standard approach is to use secure multiparty computation
or SMC protocols such as garbled-circuits or homomorphic encryp-
tion, which typically leads to significant increase in communication
and computation costs [1, 2]. The long security parameters used in
these protocols increase the dimension of the ciphertext, making the
encrypted-domain processing unsuitable for most practical purposes.

An alternative is to use Information-Theoretic SMC (IT-SMC)
protocols with Shamir’s Secret Sharing (SSS) as the building
block [3]. A wide range of applications of IT-SMC, from image
processing [4] to information retrieval [5], have been proposed.
Information exchanged between different parties in SSS is statis-
tically independent of the secret data. Also, SSS does not depend
on the hardness of specific computational problems. They often
admit faster implementations using a smaller finite field for data
representations [4]. A major disadvantage is the need to maintain a
majority of non-colluding computing parties [3]. Existing solutions
rely on either a trusted centralized server [6] or a specially-designed
ballot box [7], neither of which are ideal for large-scale IT-SMC
deployment.

In this paper, we experimentally validate the complexity advan-
tage of IT-SMC over GC, and address the collusion problem using

This work was supported in part by the National Science Foundation

under Grant 1018241.

a game-theoretical framework. Our proposed solution differs from
existing solutions in two areas. First, we consider the possibility of
detecting the leakage of secret data and devise an explicit retalia-
tion mechanism in an evolutionary game-theoretic context such that
players are forced to be honest. Second, we consider the case of
“undetectable” theft where data-owners are unaware of the leakage.
Such behaviors are deterred by injecting occasional fake collusion
requests, and detected by a censorship scheme. To the best of our
knowledge, this is the first work to use evolutionary game in deter-
ring collusion in IT-SMC and to consider both detectable and unde-
tectable collusion.

The rest of the paper is organized as follows: Section 2 describes
collusion attacks and motivates our solutions. Section 3 reviews ex-
isting works for anti-collusion in IT-SMC. Sections 4 to Section 6
describe three different types of attacks and the solutions. We pro-
vide experimental results in Section 7, and conclude the paper in
Section 8.

2. PROBLEM STATEMENT AND SOLUTION OVERVIEW

We consider two types of entities in a distributed computation pro-
tocol: the computing platform and the platform users. Denote a pair
of users as U (a customer) and V (a software vendor), each with re-
spective secrets x and y that are used for a joint computation. The
actual computation is outsourced to the computing platform P which
consists of a large number of autonomous computing agents. We
assume a covert adversarial model in that every participant is inter-
ested in stealing other’s secrets without getting caught. This model
excludes arbitrary malicious behaviors like abrupt termination but
opens door to possible collusion attacks among multiple conspiring
participants. We will focus only on attacks on the two operations:
addition and multiplication. These operations are universal in build-
ing any arithmetic and logical procedures, and are sufficient in illus-
trate the problem and our proposed solution. In Section 7, we will
demonstrate the performance of more sophisticated algorithms using
these operations as building blocks.

In SSS, a secret x from a finite field Fm, where m is the size
of the field, can be decomposed into n shares {[x]ti, i = 1, . . . , n}
such that any subset with less than the threshold t ≤ ⌈n/2⌉ shares
contains no information about x. Equations 1 and 2 describe the
share generation and secret reconstruction processes respectively.

[x]ti ,

t−1∑

j=1

αji
j + x mod m, (1)

x =
∑

i∈K

γi[x]
t
i mod m, (2)

αj’s are random numbers known only to the share generator, γi ,

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 7451

∏
1≤j≤n,j 6=i

−kj

ki−kj
are reconstruction coefficients, and K is any

subset of {1, . . . , n} with at least t elements.

Suppose the goal is to compute x + y where x and y are se-
cret data from U and V . U and V can decompose x and y into
n secret shares and send them to different agents. Each agent can
homomorphically compute the secret shares of x + y without any
communication:

[x+ y mod m]ti = [x]ti + [y]ti mod m. (3)

This simple operation is prone to two possible collusion attacks:

A1: Side-channels among agents for collusion

If an adversary controls t or more computing agents involved in the
computation, they can exchange their secret shares through this side
channel to reconstruct the secret numbers x and y. Protection against
side-channel attacks is beyond the scope of this paper and we will
simply assume that no such side channels exist.

A2: Collusion between agents and U or V
We will focus on agent’s collusion with U , as the case for V is iden-
tical. As each agent possesses secret shares from both U and V , it
is possible for U to collude with t or more agents to reconstruct y
of V . No changes in infrastructure can block such collusion as it is
necessary for U to communicate with the agents. In Section 4, we
study the mechanism to deter such an attack by evolutionary games.

Let us now consider multiplication of x and y. The constant
term of the product of the two secret polynomials is indeed xy, but
the degree of the product polynomial increases to 2t − 2. Repeated
applications of such operations will eventually arrive at a threshold
larger than n so the final result cannot be reconstructed. This prob-
lem can be resolved by either increasing the number of agents so that
it is large enough to cover all operations, or by applying a “renormal-
ization” procedure to reduce the threshold back to t [4] where each
agent breaks its product share into n separate shares, and sends one
share to each of the corresponding agents. The final share at each
agent is computed as

[xy mod m]ti =
n∑

j=1

γj [[xy mod m]2t−1
j]ti mod m. (4)

No secret is leaked through the renormalization process. It can be
shown that renormalization requires less communication than adding
more agents [8]. However, renormalization requires agents to com-
municate directly with each other, leading to the last collusion attack.

A3: Collusion attack by computing agents

The direct communication among agents enables them to exchange
secret shares. The difference between A1 and A3 is that the coalition
of agents in A3 forms after the assignment of agents to U and V . As
such, it is possible for U and V to thwart this collusion by inspecting
the communication among agents, which is described in Section 6.

3. RELATED WORK

Various anti-collusion schemes have been studied for SMC applica-
tions. The scheme in [7] requires special hardware called a verifiably
secure device or VSD. In [6], the mediated multiparty computation
(MMPC) achieves the collusion-deterrence with computational se-
curity by means of a mediator involving in a two-party secure func-
tion evaluation (SFE) with each party, where all parties are isolated
without any side channels. In contrast, our solution without any spe-
cial hardware is far more scalable than MMPC for data-intensive
SSS-based signal processing applications.

In this paper, we use evolutionary game theory (EGT) to model
collusion behaviors in distributed computing. EGT considers a pop-
ulation of decision makers in which the frequency of a particular
strategy can change over time in response to the decisions made by
all individuals. In distributed computing where a large amount of
users interact, a player can learn from mistakes from prior inter-
actions to adapt his/her strategy over time. This dynamics is ex-
actly what evolution suggests. EGT has been successfully applied in
solving various networking problems including peer-to-peer stream-
ing [9]. In SMC, we consider the emergence of a sustainable strategy
called evolutionarily stable strategy or ESS [10], chosen between
staying honest and colluding, through repeated interactions. Our
goals are to derive the conditions under which staying honest is the
ESS. The security of our approach is guaranteed by the underlying
SSS building blocks.

4. CUSTOMER-VENDOR GAME

Before starting the joint computation, U and V should understand
that they are bounded by contract not to collude with agents in steal-
ing each other’s secret. If V finds out U trying to steal V ’s secret, U
would be liable to pay for damages. Such judgement, however, can
only be rendered by an appropriate authority after possibly a long
proceeding to evaluate all the evidence. The cost and effort of col-
lecting evidence and going through the proceeding makes such this
“retaliation” outcome the most undesirable one for all parties. To
formulate the possible cheating behaviors in game, we need to rank
all outcomes and map them to appropriate payoff functions [10].

The rankings used in this paper are described in Table 1 and can
be understood as follows: as postulated before, the lowest rank out-
come is retaliation brought on by the cheating strategy of either U
or V . The second lowest-ranked outcome is when both have cheated
but neither retaliates – even though both U and V steal each other’s
secrets without getting caught, the fact that they both cheat would
imply that they have wasted resources colluding with the agents in
stealing something that is of little value. If only U cheats and gets
away with it, U will have the highest-rank (5) outcome. As for V ,
we give a rank of 3 for two reasons: (1) V successfully carries out
the task and gets compensated; and (2) V does not retaliate because
either (a) he is unaware of the theft as he does not put in a signif-
icant effort in tracking any leakage of his secret, or (b) the cost of
retaliation is higher than the cost of his secret. Either reason implies
that the loss of the secret may not be too significant to V . The situa-
tion is identical if we switch U and V . Finally, we assign the second
highest rank to both U and V when they complete the task faithfully.

Table 1. Ranking of different outcomes in customer-vendor game

Strategies Retaliate? U Rank V Rank

Either or both cheats Y 1 1

Both cheat N 2 2

U cheats only N 5 3

V cheats only N 3 5

No one cheats N 4 4

We denote the normalized payoff values for these outcomes as
0 = p0 < p1 < p2 < p3 < p4 = 1. Let q be the “non-retaliate”
probability for both U and V conditioned on the other’s cheating
behavior. The value q = 1 means that no one retaliates while q =
0 means that one always retaliates if his/her secret is stolen. The
customer-vendor game can now be described in Table 2. The two-
tuple in each entry indicates the average payoffs of U and V when
adopting the row and column strategies respectively. In the context

7452

of population game, cheating would be an ESS if (a) q2p1 > qp2 or
(b) q2p1 = qp2 and q > p3. As 0 ≤ p1, q ≤ 1, neither conditions
are valid and cheating can never be an ESS. Honesty would be an
ESS if (a) p3 > q or (b) p3 = q and qp2 > q2p1. As qp2 > q2p1 is
always true, we have the following conclusion: Honesty is an ESS

for both U and V if p3 ≥ q. When the theft is undetectable, i.e.
p3 < q, it can be shown that the following mixed strategy constitutes
an ESS [11]:

hu = hv =
1

q−p3
q(p2−qp1)

+ 1
(5)

where hu and hv are the honest fraction of U and V respectively.
Unfortunately, this situation will undoubtedly occur in real life. It is
thus important to incorporate additional mechanisms to deter cheat-
ing behaviors.

Table 2. Customer-Vendor Game
V

U

Honest Cheat

Honest (p3, p3)
(1− q)(p0, p0)
+q(p2, p4)
= (qp2, q)

Cheat
(1− q)(p0, p0)
+q(p4, p2)
= (q, qp2)

(1− q2)(p0, p0)
+q2(p1, p1)

= (q2p1, q2p1)

5. USER-AGENT GAME

For U to be successful in stealing V ’s secret, U must be able to
convince t or more agents to collude with him/her. A collusion at-
tack can thus be avoided if the agents refuse to collude. To deter
agents from colluding with users, we introduce honest undercover
users (police) that attempt to collude with agents. A cheating agent
who is reported by either a police user or a honest user will be paid
nothing and banned from the system. This worst outcome is denoted
by p0. Let λ be the conditional probability of encountering police
given a colluding request from the user. The payoff matrix for the
user-agent game is given in Table 3.

Table 3. User-Agent Game
A

U

Honest Cheat
Honest (p1, p1) (p0, p0)

Cheat
λ · (p1, p1)+
(1− λ)(p1, p1)
= (p1, p1)

λ · (p0, p0)+
(1− λ)(p2, p2)
= (1− λ, 1− λ)

The normalized payoffs are represented as 0 = p0 < p1 <
p2 = 1, and are assumed to be the same for both user and agents
for simplicity. There are two pairs of Nash Equilibriums (NE) in
this game. When p1 > 1 − λ, the agent staying honest is dominant
while no dominant strategy exists for the user. When p1 < 1 − λ,
the NE becomes cheating for both the user and the agent. Such an
unfortunate situation will occur when there are not enough police or
the payoff for an honest agent is significantly smaller than collusion.
There is no NE for the case when p1 = 1− λ.

6. COLLUSION FREENESS AMONG AGENTS

For the attack A3, we propose a censorship scheme that relies on
U and V to detect subliminal communication among agents. This
scheme requires routing all agents’ traffic through U and V . While
this is similar to the mediator solution in [6], our scheme is of
much lower complexity as it is needed for renormalization only.
Our scheme will introduce 2n more invocations of communication

in each renormalization compared to that without any collusion-
deterrence, and two more invocations of communication in each
reconstruction of an intermediate result.

Assume the the threshold of an intermediate result has reached
d > ⌈n

2
⌉ and a renormlization is needed. Denote the intermediate

answer as x and the share at agent Pi as [x]di for i = 1, 2 . . . , n.
[x]di for i = 1, . . . , ⌈n

2
⌉ are sent to U and the rest are sent to V .

Afterwards, U and V generate the renormalized shares as follows:

[[x]di]
t
j =

t−1∑

k=1

αkj
k + [x]di mod m, (6)

where αk are random numbers unknown to any agents. [[x]di]
t
j are

then sent to agent Pj for i, j = 1, 2, . . . , n. To complete the renor-
malization process, Pj can compute [x]tj based on Equation (4).
Security Proof:

As d > ⌈n
2
⌉, neither U nor V can learn anything about the inter-

mediate secret x. In order to establish subliminal communication
between agents Pi and Pj , the renormalized share must be replaced
by a certain pattern acting as a preamble for collusion. However, the
received shares [[x]di]

t
j are no different to Pj than random numbers

and thereby completely destroy any preambles. As such, no sublim-
inal communication can be established among agents.

7. EXPERIMENTS

In this section, we first present a comparison in computation ef-
ficiency between our Collusion-Deterred SSS (CD-SSS) and Gar-
bled Circuits (GC). Then, we simulate how different strategies might
evolve under different conditions in the customer-vendor game and
user-agent game.

7.1. Computational Efficiency of CD-SSS versus GC

We first test the hypothesis that our CD-SSS system provides a much
more computationally-efficient SMC system than garbled-circuit
(GC). GC is a 2-party SMC theme. To have a fair comparison with
our proposed system, the GC evaluation is performed at each of the
agents in parallel based on secret inputs provided by the customer
and vendor. Our GC implementation is based on the optimized Java
library as described in [12].

We compare the performance of CD-SSS and GC on addi-
tion, scalar multiplication, and comparison. While the first two
are straightforward, the comparison protocol is complex and our
implementation is based on the optimized algorithm described in
[13]. Here we briefly review the procedure: suppose x and y are two
(k − 1)-bit numbers to be compared and d = x − y. Notice that
d < 0 implies ⌊d/2k−1⌋ = −1 while d ≥ 0 implies ⌊d/2k−1⌋ = 0.
The comparison protocol thus comprises of a truncation protocol in
computing ⌊d/2k−1⌋ , bitwise comparison of a secret number d with
0, and reconstruction of the output results. Each of the above three
subroutines involves multiple shared random number generations,
multiplications, renormalization, and additions.

In the proposed CD-SSS, the customer and vendor are respon-
sible for renormalization and reconstructions, while the agents per-
form all the remaining computation. We adopt a number of strategies
to expedite the calculations. First, all shared random numbers are
pre-generated and distributed among the agents. Second, as commu-
nication and synchronization are needed after comparing each bit,
we amortize the measurements over a large number of comparison

7453

7454

9. REFERENCES

[1] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Mar-
tin Geisler, Thomas Jakobsen, Mikkel Krøigaard, Janus Dam
Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter,
et al., “Secure multiparty computation goes live,” in Finan-

cial Cryptography and Data Security, pp. 325–343. Springer,
2009.

[2] Ronald Cramer and Ivan Damgård, “Multiparty computation,
an introduction,” in Contemporary cryptology, pp. 41–87.
Springer, 2005.

[3] Josh Cohen Benaloh, “Secret sharing homomorphisms: Keep-
ing shares of a secret secret,” in Advances in Cryptology-

CRYPTO86. Springer, 1987, pp. 251–260.

[4] Sayed M SaghaianNejadEsfahani, Ying Luo, and Sen-ching S
Cheung, “Privacy protected image denoising with secret
shares,” in Image Processing (ICIP), 2012 19th IEEE Inter-

national Conference on. IEEE, 2012, pp. 253–256.

[5] Casey Devet, Ian Goldberg, and Nadia Heninger, “Optimally
robust private information retrieval,” in 21st USENIX Security

Symposium, 2012.

[6] Joël Alwen, Jonathan Katz, Ueli Maurer, and Vassilis
Zikas, “Collusion-preserving computation,” in Advances in

Cryptology–CRYPTO 2012, pp. 124–143. Springer, 2012.

[7] Sergei Izmalkov, Matt Lepinski, and Silvio Micali, “Verifi-
ably secure devices,” in Theory of Cryptography, pp. 273–301.
Springer, 2008.

[8] Y. Luo, S.M. Esfahani, and S.-C. Cheung, “Privacy-protected
image processing with secret shares,” IEEE Transactions on

Information Forensics and Secuity, 2013, In preparation.

[9] Yan Chen, Beibei Wang, W. Sabrina Lin, Yongle Wu, and
K. J. Ray Liu, “Cooperative peer-to-peer streaming: An evo-
lutionary game-theoretic approach,” Circuits and Systems for

Video Technology, IEEE Transactions on, vol. 20, no. 10, pp.
1346–1357, 2010.

[10] James N Webb, Game theory: decisions, interaction and Evo-

lution, Springerverlag London Limited, 2006.

[11] Z. Wang and S.-C. Cheung, “Collusion deterrence in secure
multiparty computation,” IEEE Transactions on Information

Forensics and Secuity, 2014, In preparation.

[12] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas
Schneider, “Improved garbled circuit building blocks and ap-
plications to auctions and computing minima,” in Cryptology

and Network Security, pp. 1–20. Springer, 2009.

[13] Octavian Catrina and Sebastiaan De Hoogh, “Improved prim-
itives for secure multiparty integer computation,” in Security

and Cryptography for Networks, pp. 182–199. Springer, 2010.

[14] Robert Wyttenbach, “Gamebug software,” .

7455

